Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2776-2783.DOI: 10.16085/j.issn.1000-6613.2018-0787
• Industrial catalysis • Previous Articles Next Articles
Chunqi LI
Received:
2018-04-17
Online:
2019-06-05
Published:
2019-06-05
李春启
作者简介:
李春启( 1972—) ,男,博士,高级工程师,从事现代新型煤基能源化工技术研发及科研管理工作。E-mail: lichunqi@dtctri.com.cn。
CLC Number:
Chunqi LI. Preparation of a novel catalyst of La2O3-ZrO2-Ni /Al2O3 and its performance in syngas methanation[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2776-2783.
李春启. 新型合成气甲烷化催化剂La2O3-ZrO2-Ni /Al2O3的制备与性能[J]. 化工进展, 2019, 38(06): 2776-2783.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0787
催化剂 | 比表面积(S BET) / m2·g-1 | 孔容(V p) / cm3·g-1 | 平均孔径(D p) / nm |
---|---|---|---|
催化剂A老化前 | 79.68 | 0.20 | 14.42 |
催化剂A老化后 | 40.25 | 0.13 | 14.45 |
催化剂B老化前 | 106.82 | 0.20 | 6.46 |
催化剂B老化后 | 37.78 | 0.13 | 15.43 |
催化剂 | 比表面积(S BET) / m2·g-1 | 孔容(V p) / cm3·g-1 | 平均孔径(D p) / nm |
---|---|---|---|
催化剂A老化前 | 79.68 | 0.20 | 14.42 |
催化剂A老化后 | 40.25 | 0.13 | 14.45 |
催化剂B老化前 | 106.82 | 0.20 | 6.46 |
催化剂B老化后 | 37.78 | 0.13 | 15.43 |
反应工段 | 压力(P)/MPa | 温度(T)/℃ | 组分含量(体积分数)/% | ||||
---|---|---|---|---|---|---|---|
H2 | CO | CH4 | CO2 | H2O | |||
第一、二主甲烷化 | |||||||
入口 | 3.01 | 320.0 | 34.51 | 7.44 | 41.45 | 3.02 | 13.58 |
出口 | 2.99 | 620.0 | 20.08 | 1.61 | 53.01 | 3.92 | 21.39 |
第一补充甲烷化 | |||||||
入口 | 2.88 | 280.0 | 20.08 | 1.61 | 53.01 | 3.92 | 21.39 |
出口 | 2.82 | 445.0 | 6.84 | 0.00 | 61.67 | 1.71 | 29.78 |
第二补充甲烷化 | |||||||
入口 | 2.56 | 250.0 | 9.07 | 0.00 | 82.76 | 2.32 | 5.85 |
出口 | 2.50 | 324.0 | 1.41 | 0.00 | 88.12 | 0.40 | 10.07 |
反应工段 | 压力(P)/MPa | 温度(T)/℃ | 组分含量(体积分数)/% | ||||
---|---|---|---|---|---|---|---|
H2 | CO | CH4 | CO2 | H2O | |||
第一、二主甲烷化 | |||||||
入口 | 3.01 | 320.0 | 34.51 | 7.44 | 41.45 | 3.02 | 13.58 |
出口 | 2.99 | 620.0 | 20.08 | 1.61 | 53.01 | 3.92 | 21.39 |
第一补充甲烷化 | |||||||
入口 | 2.88 | 280.0 | 20.08 | 1.61 | 53.01 | 3.92 | 21.39 |
出口 | 2.82 | 445.0 | 6.84 | 0.00 | 61.67 | 1.71 | 29.78 |
第二补充甲烷化 | |||||||
入口 | 2.56 | 250.0 | 9.07 | 0.00 | 82.76 | 2.32 | 5.85 |
出口 | 2.50 | 324.0 | 1.41 | 0.00 | 88.12 | 0.40 | 10.07 |
反应工段 | 压力(P)/MPa | 温度(T)/℃ | 催化剂A | 催化剂B | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H2/% | CO/% | CH4/% | CO2/% | H2/% | CO/% | CH4/% | CO2/% | |||
主甲烷化出口 | 2.99 | 620.0 | 25.76 | 2.05 | 67.32 | 4.87 | 27.33 | 2.07 | 65.49 | 5.11 |
第一补充甲烷化出口 | 2.82 | 445.0 | 9.81 | 0.00 | 87.72 | 2.47 | 9.87 | 0.11 | 87.02 | 3.01 |
第二补充甲烷化出口 | 2.50 | 324.0 | 1.62 | 0.00 | 97.87 | 0.51 | 1.67 | 0.02 | 97.09 | 1.22 |
反应工段 | 压力(P)/MPa | 温度(T)/℃ | 催化剂A | 催化剂B | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H2/% | CO/% | CH4/% | CO2/% | H2/% | CO/% | CH4/% | CO2/% | |||
主甲烷化出口 | 2.99 | 620.0 | 25.76 | 2.05 | 67.32 | 4.87 | 27.33 | 2.07 | 65.49 | 5.11 |
第一补充甲烷化出口 | 2.82 | 445.0 | 9.81 | 0.00 | 87.72 | 2.47 | 9.87 | 0.11 | 87.02 | 3.01 |
第二补充甲烷化出口 | 2.50 | 324.0 | 1.62 | 0.00 | 97.87 | 0.51 | 1.67 | 0.02 | 97.09 | 1.22 |
原料气H2O(g)含量/% | 反应器出口气体组成(干基)/% | 转化率或选择性/% | |||||||
---|---|---|---|---|---|---|---|---|---|
H2 | CO | CH4 | CO2 | CO转化率 | CO2转化率 | CH4选择性 | |||
6.49 | 20.36 | 1.32 | 74.62 | 3.70 | 88.32 | 16.56 | 107.33 | ||
12.96 | 23.28 | 1.32 | 70.87 | 4.53 | 87.80 | -5.76 | 97.41 | ||
16.13 | 24.28 | 1.29 | 69.58 | 4.86 | 88.04 | -14.25 | 93.63 | ||
19.43 | 26.14 | 1.34 | 67.19 | 5.33 | 87.14 | -28.94 | 86.81 |
原料气H2O(g)含量/% | 反应器出口气体组成(干基)/% | 转化率或选择性/% | |||||||
---|---|---|---|---|---|---|---|---|---|
H2 | CO | CH4 | CO2 | CO转化率 | CO2转化率 | CH4选择性 | |||
6.49 | 20.36 | 1.32 | 74.62 | 3.70 | 88.32 | 16.56 | 107.33 | ||
12.96 | 23.28 | 1.32 | 70.87 | 4.53 | 87.80 | -5.76 | 97.41 | ||
16.13 | 24.28 | 1.29 | 69.58 | 4.86 | 88.04 | -14.25 | 93.63 | ||
19.43 | 26.14 | 1.34 | 67.19 | 5.33 | 87.14 | -28.94 | 86.81 |
原料气H2O(g) 含量/% | 尾气组成(干基)/% | ||
---|---|---|---|
H2 | CO2 | CH4 | |
0.00 | 0.64 | 0.47 | 98.77 |
8.34 | 1.08 | 0.66 | 98.76 |
14.82 | 1.45 | 0.78 | 98.23 |
原料气H2O(g) 含量/% | 尾气组成(干基)/% | ||
---|---|---|---|
H2 | CO2 | CH4 | |
0.00 | 0.64 | 0.47 | 98.77 |
8.34 | 1.08 | 0.66 | 98.76 |
14.82 | 1.45 | 0.78 | 98.23 |
1 | 李安学,姜成旭,刘永健,等 .面向城镇用户的现代煤制天然气工厂概念设计研究[J].现代化工,2012,32(12):11-15. |
LI Anxue , JIANG Chengxu , LIU Yongjian ,et al .A study on the concept design of morden coal-to-SNG plant for the city and town users[J].Morden Chemical Industry,2012,32(12):11-15. | |
2 | 李安学,李春启,左玉帮,等 .我国煤制天然气现状与前景分析[J].煤炭加工与综合利用,2014 (10):1-10,95. |
LI Anxue , LI Chunqi , ZUO Yubang ,et al .Analysis on the present situation and prospect of China’s synthetic natural gas[J].Coal Processing and Comprehensive Utilization,2014 (10):1-10,95. | |
3 | 韩红梅 .煤炭深加工“十三五”升级示范技术路径分析[J].化学工业,2017,35(5):7-12. |
HAN Hongmei .Analysis of coal deep processing demonstration technologies in 13th Five-Year[J].Chemical Industry,2017,35(5):7-12. | |
4 | 蔺华林,李克健,赵利军 .煤制天然气高温甲烷化催化剂研究进展[J].化工进展,2011,30(8):1739-1743. |
LIN Hualin , LI Kejian , ZHAO Lijun .Research progress of coal-based high temperature methanation catalyst for synthetic natural gas[J].Chemical Industry and Engineering Progress,2011,30(8):1739-1743. | |
5 | 贺龙,王永刚,公维博,等 .煤制天然气浆态床甲烷化催化剂的研究[J].化工进展,2012,31(s1):311-314. |
HE Long , WANG Yonggang , GONG Weibo ,et al .Research of the catalysts for methanation in slurry bed reactor[J].Chemical Industry and Engineering Progress,2012,31(s1):311-314. | |
6 | 李茂华,杨博,鹿毅,等 .煤制天然气甲烷化催化剂及机理的研究进展[J].工业催化,2014,22(1):10-24. |
LI Maohua , YANG Bo , LU Yi ,et al .Research advance in methanation catalysts for synthetic natural gas and their catalytic mechanisms[J].Industrial Catalysis,2014,22(1):10-24. | |
7 | 黄艳辉,廖代伟,林国栋,等 .煤制合成天然气用甲烷化催化剂的研发进展[J].厦门大学学报(自然科学版),2011,50(s1):21-23. |
HUANG Yanhui , LIAO Daiwei , LIN Guodong ,et al .Progress in development of mehanation catalysts used for production of synthetic natural gas from coal[J].Journal of Xiamen University(Natural Science),2011,50(s1):21-23. | |
8 | 张旭,王子宗,陈建峰 .助剂对煤基合成气甲烷化反应用镍基催化剂的促进作用[J].化工进展,2015,34(2):389-396. |
ZHANG Xu , WANG Zizong , CHENG Jianfeng .Effects of promoters on supported nickel-based syngas methanation catalysts[J]. Chemical Industry and Engineering Progress,2015,34(2):389-396. | |
9 | 詹吉山,郭翠梨,张俊涛,等 .TiO2对Ni/Al2O3催化剂CO甲烷化性能的影响[J].燃料化学学报,2012,40(5):589-593. |
ZHAN Jishan , GUO Cuili , ZHANG Juntao ,et al .Effects of TiO2 promoter on the catalytic performance of Ni/Al2O3 in CO methanation[J].Journal of Fuel Chemical and Technology,2012,40(5):589-593. | |
10 | 胡大成,高加俭,贾春苗,等 .甲烷化催化剂及反应机理的研究进展[J].过程工程学报,2011,11(5):880-893. |
HU Dacheng , GAO Jiajian , JIA Chunmiao ,et al .Research advances in methanation catalysts and their catalytic mechanisms[J].The Chinese Journal of Process Engineering,2011,11(5):880-893. | |
11 | 陈国民,杨盛銮,薛淼,等 .含稀土甲烷化催化剂: CN1043449A[P]. 1990-07-04. |
CHEN G M , YANG S L , XUE M ,et al .Catalysts containing rare earth methanation:CN1043449A[P]. 1990-07-04. | |
12 | 崔晓曦,孟凡会,何忠,等 .助剂对Ni基催化剂结构及甲烷化性能的影响[J].无机化学学报,2014,30(2):277-283. |
CUI Xiaoxi , MENG Fanhui , HE Zhong ,et al .Effects of additives on structure and methanation performance of Ni-based catalysts[J].Chinese Journal of Inorganic Chemistry,2014,30(2):277-283. | |
13 | 张颜鑫,张因,赵永祥 .ZrO2晶型对Ni/ZrO2催化剂CO甲烷化性能的影响[J].分子催化,2013,27(4):349-355. |
ZHANG Yanxin , ZHANG Yin , ZHAO Yongxiang .Effect of ZrO2 polymorphs on catalytic performance of Ni/ZrO2 catalysts for CO methanation[J].Journal of Molecular Cataylysis (China),2013,27(4):349-355. | |
14 | 孟凡会,常慧蓉,李忠 .Ni-Mn/ Al2O3催化剂在浆态床中CO甲烷化催化性能[J].化工学报,2014,65(8):2997-3003. |
MENG Fanhui , CHANG Huirong , LI Zhong .Catalytic performance of Ni-Mn/Al2O3 catalyst for CO methanation in slurry-bed reactor[J].CIESC Journal,2014,65(8):2997-3003. | |
15 | 李振花,王二东,丁国忠,等 .Mo负载量及助剂Co对耐硫甲烷化催化剂性能的影响[J].天津大学学报(自然科学与工程技术版),2013,46(6):546-552. |
LI Zhenghua , WANG Erdong , DING Guozhong ,et al .Effect of Mo loading and additive Co on activity of sulfur-resistant methanation catalyst[J].Journal of Tianjin University (Science and Technology), 2013, 46(6):546-552. | |
16 | 张浩,武媛媛,胡彤宇,等 .La2O3含量对La-Ni/ ZrO2- Al2O3催化剂甲烷化性能的影响[J].化学工业与工程,2018,35(1):39-44. |
ZHANG Hao , WU Yuanyuan , HU Tongyu ,et al .Effect of La2O3 addition on catalytic performance of La-Ni/ ZrO2- Al2O3 catalyst for syngas methanation[J].Chemical Industry and Engineering,2018,35(1):39-44. | |
17 | 袁涌天,尹燕华,周旭,等 .Mg、La助剂在镍基甲烷化催化剂中的协同作用[J].工业催化,2015,23(3):208-212. |
YUAN Yongtian , YIN Yanhua , ZHOU Xu ,et al .Synergistic reaction of Mg and La assistants in nickel based catalysts for methanation[J].Industrial Catalysis,2015,23(3):208-212. | |
18 | 蔺华林,李克健 .稀土镧(La)不同加入方式对高温甲烷化催化剂结构特性的影响[J].神华科技,2013,11(3):77-80. |
LIN Hualin , LI Kejian .The effects on the structure characteristics of high temperature methanation catalyst for different adding methods of rare earth—lanthanum(La)[J].Shenhua Technology,2013,11(3):77-80. | |
19 | 代陈,刘志铭,谢建榕,等 .一种煤基合成气制合成天然气用Sc2O3促进Ni-ZrO2高效新型甲烷化催化剂[J].厦门大学学报(自然科学版),2013,52(5):650-654. |
DAI Chen , LIU Zhiming , XIE Jianrong ,et al .A highly efficient Sc2O3 promoted Ni-ZrO2 catalyst for methanation of coal-based syngas to produce synthetic natural gas[J].Journal of Xiamen University(Natural Science),2013,52(5):650-654. | |
20 | 张俊峰,白云星,张清德,等 .Zr改性Ni/γ- Al2O3催化剂用于浆态相合成气的低温甲烷化[J].燃料化学学报,2013,41(8):966-971. |
ZHANG Junfeng , BAI Yunxing , ZHANG Qingde ,et al .Low temperature methanation of syngas in a slurry reactor over Zr-doped Ni/γ-Al2O3 catalyst[J].Journal of Fuel Chemistry and Technology,2013,41(8):966-971. | |
21 | 杨霞,田大勇,孙守理,等 .ZrO2- Al2O3复合载体对镍基催化剂甲烷化性能的影响[J].化工进展,2014,33(3):673-678. |
YANG Xia , TIAN Dayong , SUN Shouli ,et al .Influence of zirconia-alumina composite on catalytic performance of nickel-based catalysts for methanation[J].Chemical Industry and Engineering Progress,2014,33(3):673-678. | |
22 | 曾艳,马宏方,张海涛,等 .燃烧法制备Ni基甲烷化催化剂:Mg、Mn和La助剂对催化性能的影响[J].天然气化工(C1化学与化工),2015, 40(4):6-10. |
ZENG Yan , Hongfang MA , ZHANG Haitao ,et al .Ni-based methanation catalysts prepared by solution combustion method: effect of Mg, Mn and La promoters[J].Natural Gas Chemistry(C1 Chemistry and Chemical industry),2015, 40(4):6-10. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |