Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2746-2755.DOI: 10.16085/j.issn.1000-6613.2018-1749
• Industrial catalysis • Previous Articles Next Articles
Jingxuan MENG1(),Fengyu GAO1,2,Xiaolong TANG1,2(),Honghong YI1,2,Yuansong ZHOU1,2
Received:
2018-08-31
Online:
2019-06-05
Published:
2019-06-05
Contact:
Xiaolong TANG
孟婧轩1(),高凤雨1,2,唐晓龙1,2(),易红宏1,2,周远松1,2
通讯作者:
唐晓龙
作者简介:
孟婧轩(1992—),女,硕士研究生,研究方向为大气污染控制。E-mail:<email>jingxuan1127@163.com</email>。
基金资助:
CLC Number:
Jingxuan MENG, Fengyu GAO, Xiaolong TANG, Honghong YI, Yuansong ZHOU. Review of the Ir-based catalyst in selective catalytic reduction of NO with CO[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2746-2755.
孟婧轩, 高凤雨, 唐晓龙, 易红宏, 周远松. Ir基催化剂用于CO选择性催化还原NO的研究进展[J]. 化工进展, 2019, 38(06): 2746-2755.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1749
催化剂 | 反应条件 | 温度/℃ | NO转化率/% | CO转化率/% | 参考 文献 |
---|---|---|---|---|---|
Ce0.67Sn0.33O2 | [NO]=5%,[CO]=10%,He 平衡气, GHSV=12000h-1 | 325 | 70 | — | [ |
Cu/Ce/Al(20∶1,Ce和Al体积比) | [NO]=5%,[CO]=10%, He平衡气, GHSV=12000h-1 | 350 | 100 | — | [ |
CuO-V2O5/γ-Al2O3 | [NO]=5%,[CO]=10%, Ar平衡气, GHSV=24000h-1 | 350 | 100 | — | [ |
CuO/Ni x O y /γ-Al2O3 | [NO]=5%,[CO]=10%, He平衡气, GHSV=24000h-1 | 350 | 100 | — | [ |
Cu/CeMn-10∶1 | [NO]=5%,[CO]=5%, He平衡气, GHSV=24000h-1 | 225 | 98 | 48 | [ |
Co2.9Cu0.1O4 | [NO]=5%,[CO]=5%,[O2]=2.5%,[H2O]=2.5%, Ar平衡气, GHSV=5000h-1 | 200 | 70 | 100 | [ |
催化剂 | 反应条件 | 温度/℃ | NO转化率/% | CO转化率/% | 参考 文献 |
---|---|---|---|---|---|
Ce0.67Sn0.33O2 | [NO]=5%,[CO]=10%,He 平衡气, GHSV=12000h-1 | 325 | 70 | — | [ |
Cu/Ce/Al(20∶1,Ce和Al体积比) | [NO]=5%,[CO]=10%, He平衡气, GHSV=12000h-1 | 350 | 100 | — | [ |
CuO-V2O5/γ-Al2O3 | [NO]=5%,[CO]=10%, Ar平衡气, GHSV=24000h-1 | 350 | 100 | — | [ |
CuO/Ni x O y /γ-Al2O3 | [NO]=5%,[CO]=10%, He平衡气, GHSV=24000h-1 | 350 | 100 | — | [ |
Cu/CeMn-10∶1 | [NO]=5%,[CO]=5%, He平衡气, GHSV=24000h-1 | 225 | 98 | 48 | [ |
Co2.9Cu0.1O4 | [NO]=5%,[CO]=5%,[O2]=2.5%,[H2O]=2.5%, Ar平衡气, GHSV=5000h-1 | 200 | 70 | 100 | [ |
催化剂 | 反应条件 | 温度 /℃ | NO转化率/% | CO转化率/% | 参考文献 |
---|---|---|---|---|---|
3% Pt/TiO2-SG | [NO]=0.5%,[CO]=1.5%,[O2]=1.5%, He平衡气 | 300 | 73 | — | [ |
Pt/WO3/ZrO2 | [NO]=0.5%,[CO]=1.5%,[O2]=2%, N2平衡气 | 380 | 16 | — | [ |
Pd/Ce0.6Zr0.4O2 | [NO]= 0.023%,[CO]= 0.0685%,[O2]=10.5%, N2平衡气 | 350 | 96 | 100 | [ |
Rh/Na-Beta zeolite | [NO]=0.05%,[CO]=1.5%,[O2]=9%,[H2O]=6%, N2平衡气 | 350 | 45 | 79 | [ |
LaCu-ZSM-5/cordierite | [NO]=0.05%,[CO]=0.1%,[O2]=6.8%,[SO2]=100μL/L, [H2O]=10.5%, He平衡气 | 250 | 50 | 100 | [ |
Ba/Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L, [H2O]=6%,He平衡气, GHSV=60000h-1 | 260 | 100 | — | [ |
催化剂 | 反应条件 | 温度 /℃ | NO转化率/% | CO转化率/% | 参考文献 |
---|---|---|---|---|---|
3% Pt/TiO2-SG | [NO]=0.5%,[CO]=1.5%,[O2]=1.5%, He平衡气 | 300 | 73 | — | [ |
Pt/WO3/ZrO2 | [NO]=0.5%,[CO]=1.5%,[O2]=2%, N2平衡气 | 380 | 16 | — | [ |
Pd/Ce0.6Zr0.4O2 | [NO]= 0.023%,[CO]= 0.0685%,[O2]=10.5%, N2平衡气 | 350 | 96 | 100 | [ |
Rh/Na-Beta zeolite | [NO]=0.05%,[CO]=1.5%,[O2]=9%,[H2O]=6%, N2平衡气 | 350 | 45 | 79 | [ |
LaCu-ZSM-5/cordierite | [NO]=0.05%,[CO]=0.1%,[O2]=6.8%,[SO2]=100μL/L, [H2O]=10.5%, He平衡气 | 250 | 50 | 100 | [ |
Ba/Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L, [H2O]=6%,He平衡气, GHSV=60000h-1 | 260 | 100 | — | [ |
WO3 质量分数/% | 反应温度/℃ | NO x 转化率/% | N2 选择性/% |
---|---|---|---|
0 | 250 | 11 | 81 |
1 | 260 | 85 | 89 |
10 | 260 | 86 | 89 |
30 | 265 | 82 | 87 |
40 | 265 | 69 | 81 |
50 | 255 | 49 | 79 |
80 | 275 | 42 | 72 |
100 | 270 | 39 | 79 |
WO3 质量分数/% | 反应温度/℃ | NO x 转化率/% | N2 选择性/% |
---|---|---|---|
0 | 250 | 11 | 81 |
1 | 260 | 85 | 89 |
10 | 260 | 86 | 89 |
30 | 265 | 82 | 87 |
40 | 265 | 69 | 81 |
50 | 255 | 49 | 79 |
80 | 275 | 42 | 72 |
100 | 270 | 39 | 79 |
催化剂 | 反应条件 | 温度/℃ | NO 转化率/% | CO转化率/% | 参考 文献 |
---|---|---|---|---|---|
Ir/SiO2 | [NO]=0.1%,[CO]=0.75%,[O2]=1%,He平衡气,GHSV=40000h-1 | 365 | 80 | — | [ |
Ir/Al2O3 | [NO]=0.1%,[CO]=0.75%,[O2]=1%,He平衡气,GHSV=40000h-1 | 400 | 50 | — | [ |
Ir/SiO2 | [NO]=0.1%,[CO]=0.6%,[O2]=5%,[SO2]=20μL/L,[H2O]=6%,He平衡气, GHSV=75000h-1 | 350 | 62 | 90 | [ |
Ir/WO3 | [NO]=0.1%,[CO]=1%,[O2]=2%,He平衡气 | 250 | 79.5 | — | [ |
Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L,[H2O]=6%,He平衡气, GHSV=75000h-1 | 300 | 70 | 55 | [ |
Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.5%,[O2]=10%,[H2O]=1%,He平衡气,GHSV=34000h-1 | 260 | 86 | — | [ |
Nb2O5/Ir/SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[H2O]=6%,He平衡气,GHSV=75000h-1 | 280 | 80 | — | [ |
Ba/Ir/SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L,[H2O]=6%,He平衡气, GHSV=75000h-1 | 280 | 65 | 60 | [ |
Ba-Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L,[H2O]=6%,He平衡气, GHSV=75000h-1 | 280 | 94 | 90 | [ |
Ba/Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L,[H2O]=6%,He平衡气, GHSV=60000h-1 | 260 | 100 | — | [ |
催化剂 | 反应条件 | 温度/℃ | NO 转化率/% | CO转化率/% | 参考 文献 |
---|---|---|---|---|---|
Ir/SiO2 | [NO]=0.1%,[CO]=0.75%,[O2]=1%,He平衡气,GHSV=40000h-1 | 365 | 80 | — | [ |
Ir/Al2O3 | [NO]=0.1%,[CO]=0.75%,[O2]=1%,He平衡气,GHSV=40000h-1 | 400 | 50 | — | [ |
Ir/SiO2 | [NO]=0.1%,[CO]=0.6%,[O2]=5%,[SO2]=20μL/L,[H2O]=6%,He平衡气, GHSV=75000h-1 | 350 | 62 | 90 | [ |
Ir/WO3 | [NO]=0.1%,[CO]=1%,[O2]=2%,He平衡气 | 250 | 79.5 | — | [ |
Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L,[H2O]=6%,He平衡气, GHSV=75000h-1 | 300 | 70 | 55 | [ |
Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.5%,[O2]=10%,[H2O]=1%,He平衡气,GHSV=34000h-1 | 260 | 86 | — | [ |
Nb2O5/Ir/SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[H2O]=6%,He平衡气,GHSV=75000h-1 | 280 | 80 | — | [ |
Ba/Ir/SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L,[H2O]=6%,He平衡气, GHSV=75000h-1 | 280 | 65 | 60 | [ |
Ba-Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L,[H2O]=6%,He平衡气, GHSV=75000h-1 | 280 | 94 | 90 | [ |
Ba/Ir/WO3-SiO2 | [NO]=0.05%,[CO]=0.3%,[O2]=5%,[SO2]=1μL/L,[H2O]=6%,He平衡气, GHSV=60000h-1 | 260 | 100 | — | [ |
前体 | NO x 转化率/% | N2 选择性/% |
---|---|---|
Ir(NO3)4 | 44 | 84 |
H2IrCl6 | 43 | 88 |
Ir(NH3)6(NO3)3 | 64 | 86 |
Ir(NH3)6(OH)3 | 72 | 89 |
前体 | NO x 转化率/% | N2 选择性/% |
---|---|---|
Ir(NO3)4 | 44 | 84 |
H2IrCl6 | 43 | 88 |
Ir(NH3)6(NO3)3 | 64 | 86 |
Ir(NH3)6(OH)3 | 72 | 89 |
1 | SKALSKA K , MILLER J S , LEDAKOWICZ S . Trends in NO x abatement: a review[J]. The Science of the Total Environment, 2010, 408(19): 3976-3989. |
2 | CHENG X , BI X T . A review of recent advances in selective catalytic NO x reduction reactor technologies[J]. Particuology, 2014, 16: 1-18. |
3 | 李晨露, 唐晓龙, 易红宏,等 . Mn基低温SCR催化剂的抗H2O、抗SO2研究进展[J]. 化工进展, 2017, 36(3): 934-943. |
LI C L , TANG X L , YI H H ,et al . Review on manganese based catalysts resistant to H2O and SO2 for SCR reduction at low temperature[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 934-943. | |
4 | ZHANG X , MA C, CHENG X , et al . Performance of Fe-Ba/ZSM-5 catalysts in NO + O2 adsorption and NO + CO reduction[J]. International Journal of Hydrogen Energy, 2017, 42(10): 7077-7088. |
5 | WANG L , CHENG X , WANG Z , et al . Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO[J]. Applied Catalysis B: Environmental, 2017, 201: 636-51. |
6 | SALKER A V , DESAI M S F . CO-NO/O2 redox reactions over Cu substituted cobalt oxide spinels[J]. Catalysis Communications, 2016, 87: 116-119. |
7 | GU X , LI H , LIU L , et al . Promotional effect of CO pretreatment on CuO/CeO2 catalyst for catalytic reduction of NO by CO[J]. Journal of Rare Earths, 2014, 32(2): 139-145. |
8 | LIU T , QIAN J , YAO Y , et al . Research on SCR of NO with CO over the Cu0.1La0.1Ce0.8O mixed-oxide catalysts: effect of the grinding[J]. Molecular Catalysis, 2017, 430: 43-53. |
9 | LV Y , ZHANG H , YAO X , et al . Investigation of the physicochemical properties of CuO/Sm2O3/γ-Al2O3 catalysts and their activity for NO removal by CO[J]. Journal of Molecular Catalysis A: Chemical, 2016, 420: 34-44. |
10 | XIONG Y , YAO X , TANG C , et al . Effect of CO-pretreatment on the CuO-V2O5/γ-Al2O3 catalyst for NO reduction by CO[J]. Catal. Sci. Technol., 2014, 4(12): 4416-4425. |
11 | DENG C , LI B , DONG L , et al . NO reduction by CO over CuO supported on CeO2-doped TiO2: the effect of the amount of a few CeO2 [J]. Physical Chemistry Chemical Physics : PCCP, 2015, 17(24): 16092-16109. |
12 | YAO X , XIONG Y , ZOU W , et al . Correlation between the physicochemical properties and catalytic performances of Ce x Sn1– x O2 mixed oxides for NO reduction by CO[J]. Applied Catalysis B: Environmental, 2014, 144: 152-165. |
13 | SALKER A V , DESAI M S F . Catalytic activity and mechanistic approach of NO reduction by CO over M0.05 Co2.95O4 (M = Rh, Pd & Ru) spinel system[J]. Applied Surface Science, 2016, 389: 344-353. |
14 | SALKER A V , DESAI M S FAL . Low-temperature nitric oxide reduction over silver-substituted cobalt oxide spinels[J]. Catalysis Science & Technology, 2016, 6(2): 430-433. |
15 | ZHU H-O , J-R KIM , S-K IHM . Selective catalytic reduction of NO with CO on Pt/W–Ce–Zr catalysts[J]. Reaction Kinetics and Catalysis Letters, 2009, 97(2): 207-215. |
16 | ZHU H-O , J-R KIM , S-K IHM . Characteristics of Pt/WO3/CeO2/ZrO2 catalysts for catalytic reduction of NO by CO[J]. Applied Catalysis B: Environmental, 2009, 86(1/2): 87-92. |
17 | WANG J A , CUAN A , SALMONES J , et al . Studies of sol-gel TiO2 and Pt/TiO2 catalysts for NO reduction by CO in an oxygen-rich condition[J]. Applied Surface Science, 2004, 230(1-4): 94-105. |
18 | LI M S , SESHAN K , LEFFERTS L . Influence of NO on the reduction of NO2 with CO over Pt/SiO2 in the presence of O2 [J]. Chinese Journal of Chemistry, 2007, 25(4): 435-438. |
19 | HUANG K , LIN L , YANG K , et al . Promotion effect of ultraviolet light on NO + CO reaction over Pt/TiO2 and Pt/CeO2-TiO2 catalysts[J]. Applied Catalysis B: Environmental, 2015, 179: 395-406. |
20 | CHEN L F , GONZ L G , WANG J A , et al . Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen[J]. Applied Surface Science, 2005, 243(1-4): 319-328. |
21 | NAKATSUJI T , YAMAGUCHI T , SATO N , et al . A selective NO x reduction on Rh-based catalysts in lean conditions using CO as a main reductant[J]. Applied Catalysis B: Environmental, 2008, 85(1/2): 61-70. |
22 | DOI Y, HANEDA M . Catalytic performance of supported Ir catalysts for NO reduction with C3H6 and CO in slight lean conditions[J]. Catalysis Today, 2018, 303: 8-12. |
23 | HANEDA M , HAMADA H . Promotional role of H2O in the selective catalytic reduction of NO with CO over Ir/WO3/SiO2 catalyst[J]. Journal of Catalysis, 2010, 273(1): 39-49. |
24 | INOMATA H , SHIMOKAWABE M , KUWANA A , et al . Selective reduction of NO with CO in the presence of O2 with Ir/WO3 catalysts: influence of preparation variables on the catalytic performance[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 783-789. |
25 | NANBA T , K-I WADA , MASUKAWA S , et al . Enhancement of activity of Ir catalysts for selective catalytic reduction of NO with CO by physical mixing with SiO2 [J]. Applied Catalysis A: General, 2010, 380(1/2): 66-71. |
26 | 付玉秀,仲雪梅,常化振,等 . 铈钴复合氧化物催化剂CO-SCR反应机理研究[J]. 中国环境科学, 2018,38(8):2934-2940. |
FU Y X , ZHONG X M , CHANG Z H ,et al . Study on reaction mechanism of CO-SCR of samarium cobalt composite oxide catalyst[J]. Chinese Environmental Science, 2018, 38(8):2934-2940. | |
27 | TAUSTER S J , MURRELL L . The NO CO reaction in the presence of excess O2 as catalyzed by iridium[J]. Journal of Catalysis, 1976, 41(1): 192-195. |
28 | HANEDA M , PUSPARATU, KINTAICHI Y , et al . Promotional effect of SO2 on the activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions[J]. Journal of Catalysis, 2005, 229(1): 197-205. |
29 | YOSHINARI T , SATO K , HAMADA M . Remarkable promoting effcet of coexisting SO2 on the catalytic of Ir/SiO2 for NO reduction in the presence of oxygen[J]. Catalysis Communications, 2001,2:155-158. |
30 | YOSHINARI T , SATO K , HANEDA M , et al . Positive effect of coexisting SO2 on the activity of supported iridium catalysts for NO reduction in the presence of oxygen[J]. Applied Catalysis B: Environmental, 2003, 41(1/2): 157-169. |
31 | YAO X , TANG C , JI Z , et al . Investigation of the physicochemical properties and catalytic activities of Ce0.67M0.33O2(M = Zr4+, Ti4+, Sn4+) solid solutions for NO removal by CO[J]. Catal. Sci. Technol., 2013, 3(3): 688-698. |
32 | GE C , LIU L , LIU Z , et al . Improving the dispersion of CeO2 on γ-Al2O3 to enhance the catalytic performances of CuO/CeO2/γ-Al2O3 catalysts for NO removal by CO[J]. Catalysis Communications, 2014, 51: 95-99. |
33 | GE C , LIU L , YAO X , et al . Treatment induced remarkable enhancement of low-temperature activity and selectivity of copper-based catalysts for NO reduction[J]. Catalysis Science & Technology, 2013, 3(6): 1547. |
34 | DENG C , HUANG Q , ZHU X , et al . The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO + CO model reaction[J]. Applied Surface Science, 2016, 389: 1033-1049. |
35 | WANG T , LI L , GUAN N . Combination catalyst for the purification of automobile exhaust from lean-burn engine[J]. Fuel Processing Technology, 2013, 108: 41-46. |
36 | SASAKI M , SULTANA A , HANEDA M , et al . Practical evaluation of the catalytic performance of Ir/SiO2-based catalysts for selective reduction of NO with CO[J]. Topics in Catalysis, 2009, 52(13-20): 1803-1807. |
37 | OGURA M , KAWAMURA A , MATSUKATA M . Catalytic activity of Ir for NO-CO reaction in the presence of SO2 and excess oxygen[J]. Chemistry Letters, 2000, 29(2): 146-147. |
38 | SHIMOKAWABE M , UMEDA N . Selective catalytic reduction of NO by CO over supported iridium and rhodium catalysts[J]. Chemistry Letters, 2004, 33(5): 534-535. |
39 | TAKAHASHI A , NAKAMURA I , HANEDA M , et al . Role of tungsten in promoting selective reduction of NO with CO over Ir/WO3-SiO2 catalysts[J]. Catalysis Letters, 2006, 112(3/4): 133-138. |
40 | NANBA T , SHINOHARA S , UCHISAWA J , et al . Enhancement of activity of Ir catalysts for the selective catalytic reduction of NO by CO[J]. Chemistry Letters, 2006, 35(4): 450-451. |
41 | NANBA T , SHINOHARA S , MASUKAWA S , et al . Formation of active sites on Ir/WO3-SiO2 for selective catalytic reduction of NO by CO[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 420-425. |
42 | TAKAHASHI A , FUJITANI T , NAKAMURA I , et al . Excellent promoting effect of Ba addition on the catalytic activity of Ir/WO3-SiO2 for the selective reduction of NO with CO[J]. Chemistry Letters, 2006, 35(4): 420-421. |
43 | HANEDA M , HAMADA H . Promoting effect of coexisting H2O on the activity of Ir/WO3/SiO2 catalyst for the selective reduction of NO with CO[J]. Chemistry Letters, 2008, 37(8): 830-831. |
44 | TAMAI T , HANEDA M , FUJITANI T , et al . Promotive effect of Nb2O5 on the catalytic activity of Ir/SiO2 for NO reduction with CO under oxygen-rich conditions[J]. Catalysis Communications, 2007, 8(6): 885-888. |
45 | HANEDA M , KUDO H , NAGAO Y , et al . Enhanced activity of Ba-doped Ir/SiO2 catalyst for NO reduction with CO in the presence of O2 and SO2 [J]. Catalysis Communications, 2006, 7(7): 423-426. |
46 | HANEDA M , AOKI N , ARIMITSU K , et al . Activity enhancement of WO3-promoted Ir/SiO2 catalysts by high-temperature calcination for the selective reduction of NO with CO[J]. Bulletin of the Chemical Society of Japan, 2009, 82(8): 1023-1029. |
47 | HANEDA M , FUJITANI T , HAMADA H . Effect of iridium dispersion on the catalytic activity of Ir/SiO2 for the selective reduction of NO with CO in the presence of O2 and SO2 [J]. Journal of Molecular Catalysis A: Chemical, 2006, 256(1/2): 143-148. |
48 | SHIMOKAWABE M , NIITSU M , INOMATA h , et al . A highly active Ir/WO3 catalyst for the selective reduction of NO by CO in the presence of O2 or O2+SO2 [J]. Chemistry Letters, 2005, 34(10): 1426-1427. |
49 | INOMATA H , SHIMOKAWABE M , ARAI M . An Ir/WO3 catalyst for selective reduction of NO with CO in the presence of O2 and/or SO2 [J]. Applied Catalysis A: General, 2007, 332(1): 146-152. |
50 | HANEDA M , CHIBA K , TAKAHASHI A , et al . Enhancing effect of H2 on the selective reduction of NO with CO over Ba-doped Ir/WO3/SiO2 catalyst[J]. Catalysis Letters, 2007, 118(3/4): 159-164. |
51 | FUJITANI T , NAKAMURA I , KOBAYASHI Y , et al . Adsorption and reactivity of SO2 on Ir(111) and Rh(111) [J]. Surface Science, 2007, 601(6): 1615-1622. |
52 | CHEN W , SHEN Q , BARTYNSKI R A , et al . Reduction of nitric oxide by acetylene on Ir surfaces with different morphologies: comparison with reduction of NO by CO[J]. Langmuir : the ACS Journal of Surfaces and Colloids, 2013, 29(4): 1113-1121. |
53 | NAKAMURA I , FUJITANI T . Adsorption behavior and reaction properties of NO and CO on Ir(111) and Rh(111) [J]. Catalysis Surveys from Asia, 2009, 13(1): 22-29. |
54 | LYONS K J , XIE J , MITCHELL W J . Adsorption of carbon monoxide on Ir (110) investigated by infrared reflection-absorption spectroscopy[J]. Surface Science, 1995, 325(1/2): 85-92. |
55 | BURGHAUS U , DING J , WEINBERG W H . Effect of preadsorbed oxygen on the adsorption of CO on Ir (110) [J]. Surface Science, 1997, 384(1-3): L869-L874. |
56 | TANG C , SEVERSON M W . Coverage-dependent infrared spectroscopy of carbon monoxide on Iridium (111) in aqueous solution: a benchmark comparison between chemisorption in ordered electrochemical and ultrahigh-vacuum environments[J]. The Journal of Physical Chemistry B, 1998, 102(44): 8796-8806. |
57 | ZOU S , WEAVER M J . Spatial structure of ordered electrochemical adlayers from in situ scanning tunneling microscopy and infrared spectroscopy: single-site carbon monoxide binding on iridium (111) and comparisons with related systems[J]. Surface Science, 2000, 446(1/2): L95-L100. |
58 | FUJITANI T , NAKAMURA I , KOBAYASHI Y . Adsorption and reactions of NO on clean and CO-precovered Ir (111) [J]. The Journal of Physical Chemistry B, 2005, 109(37): 17603-17607. |
59 | FUJITANI T , NAKAMURA I , TAKAHASHI A , et al . Kinetics and mechanism of NO reduction with CO on Ir surfaces[J]. Journal of Catalysis, 2008, 253(1): 139-147. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |