Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2738-2745.DOI: 10.16085/j.issn.1000-6613.2018-2148
• Energy processes and technology • Previous Articles Next Articles
Debing WU(),Shiming XU(
),Xi WU,Junyong HU,Qiang LENG,Zhijie XU,Dongxu JIN,Ping WANG
Received:
2018-11-02
Online:
2019-06-05
Published:
2019-06-05
Contact:
Shiming XU
吴德兵(),徐士鸣(
),吴曦,胡军勇,冷强,徐志杰,金东旭,王平
通讯作者:
徐士鸣
作者简介:
吴德兵(1991—),男,博士研究生,研究方向为低品位热直接发电中的逆电渗析电堆设计及特性。E-mail:<email>DBWU@mail.dlut.edu.cn</email>。
基金资助:
CLC Number:
Debing WU, Shiming XU, Xi WU, Junyong HU, Qiang LENG, Zhijie XU, Dongxu JIN, Ping WANG. Influences of different monovalent electrolyte aqueous solution on the performance characteristics of reverse electrodialysis stack[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2738-2745.
吴德兵, 徐士鸣, 吴曦, 胡军勇, 冷强, 徐志杰, 金东旭, 王平. 不同单价电解质水溶液对逆电渗析电堆工作特性的影响[J]. 化工进展, 2019, 38(06): 2738-2745.
膜型号 | 膜厚度/μm | 膜电阻/Ω·cm2 | 离子选择透过系数/% | 固定电荷浓度/meq·gdry -1 | 膨胀度/% |
---|---|---|---|---|---|
CMV | 110 | 2.29 | 98.8 | 2.01 | 0.296 |
AMV | 107 | 3.15 | 87.3 | 1.78 | 0.198 |
膜型号 | 膜厚度/μm | 膜电阻/Ω·cm2 | 离子选择透过系数/% | 固定电荷浓度/meq·gdry -1 | 膨胀度/% |
---|---|---|---|---|---|
CMV | 110 | 2.29 | 98.8 | 2.01 | 0.296 |
AMV | 107 | 3.15 | 87.3 | 1.78 | 0.198 |
1 | ZEVENHOVEN R , BEYENE A . The relative contribution of waste heat from power plants to global warming[J]. Energy, 2011, 36(6): 3754-3762. |
2 | TCHANCHE B F , LAMBRINOS G , FRANGOUDAKIS A , et al . Low-grade heat conversion into power using organic rankine cycles—a review of various applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3963-3979. |
3 | THEKDI A , NIMBALKAR S U . Industrial waste heat recovery—potential applications , available technologies and crosscutting R&D opportunities[R]. Tennessee:Oak Ridge National Laboratory, 2014:5-20. |
4 | 刘茜, 李华山, 卜宪标, 等 . 太阳能有机朗肯-闪蒸循环工质选择[J]. 化工进展, 2018, 37(5): 1781-1788. |
LIU Xi , LI Huashan , BU Xianbiao , et al . Working fluid selection for solar binary-flashing cycle[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1781-1788. | |
5 | 韩中合, 许鸿胜, 范伟, 等 . 低温烟气有机郎肯循环系统热力性能与经济性的对比分析[J]. 化工进展, 2017, 36(11): 4010-4016. |
HAN Zhonghe , XU Hongsheng , FAN Wei , et al . Comparison of thermodynamic performance and economic efficiency of ORC system for low temperature flue gas[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4010-4016. | |
6 | CARATI A , MARINO M , BROGIOLI D . Thermodynamic study of a distiller-electrochemical cell system for energy production from low temperature heat sources[J]. Energy, 2015, 93: 984-993. |
7 | HU J , XU S , WU X , et al . Theoretical simulation and evaluation for the performance of the hybrid multi-effect distillation-reverse electrodialysis power generation system[J]. Desalination, 2018, 443: 172-183. |
8 | 吴曦, 徐士鸣, 吴德兵, 等 . 逆电渗析法热-电转换系统循环工质匹配准则[J]. 化工学报, 2016, 67(s2): 326-332. |
WU Xi , XU Shiming , WU Debing , et al . Methodology of assessing working mediums availability for anovel heat-power conversion system with reverse electrodialysis technology[J]. CIESC Journal, 2016, 67(s2): 326-332. | |
9 | 徐士鸣, 吴曦, 吴德兵 . 一种新型低品位热能发电方法及装置: CN105261808A[P]. 2016-01-20. |
XU Shiming , WU Xi , WU Debing . A new method of conversing low grade temperature heat to power:CN201510694726.4[P]. 2016-01-20. | |
10 | KIM D D H, PARK B H , KWON K , et al . Modeling of power generation with thermolytic reverse electrodialysis for low-grade waste heat recovery[J]. Applied Energy, 2017, 189: 201-210. |
11 | 徐士鸣, 吴德兵, 吴曦, 等 . 氯化锂溶液为工质的溶液浓差发电实验研究[J]. 大连理工大学学报, 2017, 57(4): 337-344. |
XU Shiming , WU Debing , WU Xi , et al . Experimental study of solution concentration difference power generation with lithium chloride solution as working fluid[J]. Journal of Dalian University of Technology, 2017, 57(4): 337-344. | |
12 | 徐士鸣,徐志杰,吴曦, 等 . 溶液浓差能驱动的逆电渗析有机废水氧化降解机理研究[J]. 环境科学学报, 2018,38(12):4642-4651. |
XU Shiming , XU Zhijie , WU Xi , et al . Study on the mechanism of organic wastewater oxidation degradation with reverse electrodialysis powered by concentration difference energy[J].Acta Scientiae Circumstantiae, 2018,38(12):4642-4651. | |
13 | 田中良修 . 离子交换膜:基本原理及应用[M]. 葛道才,任庆春,译. 北京:化学工业出版社,2010:34-43. |
TANAKA Y . Ion exchange membranes: fundamentals and applications[M]. GE D C, REN Q C, trans.Beijing:Chemical Industry Press, 2010:34-43. | |
14 | VEERMAN J , SAAKES M , METZ S J , et al . Reverse electrodialysis: evaluation of suitable electrode systems[J]. Journal of Applied Electrochemistry, 2010, 40(8): 1461-1474. |
15 | PATTLE R E . Production of electric power by mixing fresh and salt water in the hydroelectric pile[J]. Nature, 1954, 174(4431): 660. |
16 | TEDESCO M , CIPOLLINA A , TAMBURINI A , et al . Towards 1kW power production in a reverse electrodialysis pilot plant with saline waters and concentrated brines[J]. Journal of Membrane Science, 2017, 522: 226-236. |
17 | VEERMAN J , SAAKES M , METZ S J , et al . Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water[J]. Journal of Membrane Science, 2009, 327(1/2): 136-144. |
18 | TEDESCO M , BRAUNS E , CIPOLLINA A , et al . Reverse electrodialysis with saline waters and concentrated brines: a laboratory investigation towards technology scale-up[J]. Journal of Membrane Science, 2015, 492: 9-20. |
19 | TEDESCO M , SCALICI C , VACCARI D , et al . Performance of the first reverse electrodialysis pilot plant for power production from saline waters and concentrated brines[J]. Journal of Membrane Science, 2016, 500: 33-45. |
20 | VERMAAS D A , SAAKES M , NIJMEIJER K . Doubled power density from salinity gradients at reduced intermembrane distance[J]. Environmental Science & Technology, 2011, 45(16): 7089-7095. |
21 | ZHU X , HE W , LOGAN B E . Influence of solution concentration and salt types on the performance of reverse electrodialysis cells[J]. Journal of Membrane Science, 2015, 494: 154-160. |
22 | POST J W , HAMELERS H V M , BUISMAN C J N . Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system[J]. Environmental Science & Technology, 2008, 42(15): 5785-5790. |
23 | KIM H K, LEE M S, LEE S Y, et al . High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer[J]. J. Mater. Chem. A , 2015, 3(31): 16302-16306. |
24 | PITZER K S , MAYORGA G . Thermodynamics of electrolytesII. activity and osmotic coefficients for strong electrolytes with one or both ions univalent[J]. The Journal of Physical Chemistry, 1973, 77(19): 2300-2308. |
25 | FONTANANOVA E , MESSANA D , TUFA R A , et al . Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion[J]. Journal Power Sources, 2017, 340: 282-293. |
26 | GALAMA A H , VERMAAS D A , VEERMAN J , et al . Membrane resistance: the effect of salinity gradients over a cation exchange membrane[J]. Journal of Membrane Science, 2014, 467: 279-291. |
27 | GALAMA A H , HOOG N A , YNTEMA D R . Method for determining ion exchange membrane resistance for electrodialysis systems[J]. Desalination, 2016, 380: 1-11. |
28 | VERMAAS D A , GULER E , SAAKES M , et al . Theoretical power density from salinity gradients using reverse electrodialysis[J]. Energy Procedia, 2012, 20: 170-184. |
29 | BRAUNS E . Salinity gradient power by reverse electrodialysis: effect of model parameters on electrical power output[J]. Desalination, 2009, 237(1/2/3): 378-391. |
[1] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[4] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[5] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[6] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[7] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[8] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[9] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[10] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[11] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[12] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[13] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[14] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[15] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 420
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 343
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |