Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (06): 2726-2737.DOI: 10.16085/j.issn.1000-6613.2018-2051
• Energy processes and technology • Previous Articles Next Articles
Cuijuan LUO1,Dengfeng ZHANG1(),Chunpeng ZHAO2,3,4,Zengmin LUN2,3,4,Haitao WANG2,3,4,Yanhong LI1,Jin YANG1
Received:
2018-10-16
Online:
2019-06-05
Published:
2019-06-05
Contact:
Dengfeng ZHANG
罗翠娟1,张登峰1(),赵春鹏2,3,4,伦增珉2,3,4,王海涛2,3,4,李艳红1,杨劲1
通讯作者:
张登峰
作者简介:
罗翠娟(1995—),女,硕士研究生,主要研究方向为非常规天然气开采与二氧化碳地质封存。
基金资助:
CLC Number:
Cuijuan LUO, Dengfeng ZHANG, Chunpeng ZHAO, Zengmin LUN, Haitao WANG, Yanhong LI, Jin YANG. Occurrence and distribution of moisture in gas shale reservoirs:[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2726-2737.
罗翠娟, 张登峰, 赵春鹏, 伦增珉, 王海涛, 李艳红, 杨劲. 含气页岩中水分赋存与分布的研究进展[J]. 化工进展, 2019, 38(06): 2726-2737.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-2051
页岩样品 | 相对湿度/% | 含水率/% | n L,dry/mmol·g-1 | n L,moist/mmol·g-1 | 吸附温度/K | n L降幅/% | 文献 |
---|---|---|---|---|---|---|---|
CN_11 | 33 | 0.72 | 0.18 | 0.15 | 312.15 | 16.67 | [ |
CN_11 | 53 | 1.05 | 0.18 | 0.14 | 312.15 | 22.22 | [ |
CN_11 | 75 | 1.58 | 0.18 | 0.10 | 312.15 | 44.44 | [ |
CN_11 | 97 | 4.06 | 0.18 | 0.08 | 312.15 | 55.56 | [ |
CN_22 | 97 | 0.98 | 0.11 | 0.06 | 312.15 | 45.45 | [ |
CN_33 | 97 | 1.53 | 0.12 | 0.05 | 312.15 | 58.33 | [ |
CQ_14 | 97 | 2.50 | 0.22 | 0.08 | 312.15 | 63.64 | [ |
Bossier | 97 | 7.05 | 0.11 | 0.02 | 318.15 | 81.82 | [ |
Haynesville | 97 | 4.58 | 0.09 | 0.04 | 318.15 | 55.56 | [ |
unnamed | 97 | 2.69 | 0.22 | 0.10 | 318.15 | 54.55 | [ |
LOS-1 | 97 | 1.94 | 0.08 | 0.02 | 318.15 | 75.00 | [ |
LOS-2 | 97 | 5.81 | 0.14 | 0.08 | 318.15 | 42.86 | [ |
LOS-3 | 97 | 4.12 | 0.23 | 0.18 | 318.15 | 21.74 | [ |
页岩样品 | 相对湿度/% | 含水率/% | n L,dry/mmol·g-1 | n L,moist/mmol·g-1 | 吸附温度/K | n L降幅/% | 文献 |
---|---|---|---|---|---|---|---|
CN_11 | 33 | 0.72 | 0.18 | 0.15 | 312.15 | 16.67 | [ |
CN_11 | 53 | 1.05 | 0.18 | 0.14 | 312.15 | 22.22 | [ |
CN_11 | 75 | 1.58 | 0.18 | 0.10 | 312.15 | 44.44 | [ |
CN_11 | 97 | 4.06 | 0.18 | 0.08 | 312.15 | 55.56 | [ |
CN_22 | 97 | 0.98 | 0.11 | 0.06 | 312.15 | 45.45 | [ |
CN_33 | 97 | 1.53 | 0.12 | 0.05 | 312.15 | 58.33 | [ |
CQ_14 | 97 | 2.50 | 0.22 | 0.08 | 312.15 | 63.64 | [ |
Bossier | 97 | 7.05 | 0.11 | 0.02 | 318.15 | 81.82 | [ |
Haynesville | 97 | 4.58 | 0.09 | 0.04 | 318.15 | 55.56 | [ |
unnamed | 97 | 2.69 | 0.22 | 0.10 | 318.15 | 54.55 | [ |
LOS-1 | 97 | 1.94 | 0.08 | 0.02 | 318.15 | 75.00 | [ |
LOS-2 | 97 | 5.81 | 0.14 | 0.08 | 318.15 | 42.86 | [ |
LOS-3 | 97 | 4.12 | 0.23 | 0.18 | 318.15 | 21.74 | [ |
孔隙类型 | 成因机制 | 孔径 | 常见分布特征 |
---|---|---|---|
有机质孔 | 有机质成熟生烃 | 2~1000nm | 常以近球形、椭圆形、凹坑状或片麻状等分布于热演化程度较高的有机质中 |
无机孔 | |||
粒间孔 | 矿物颗粒堆积形成 | 5~1200nm | 多见于软硬颗粒接触面和黏土矿物聚合体中 |
粒内孔 | 矿物成岩转化 | 8~100nm | 多见于层状或薄片状黏土矿物颗粒层间 |
晶间孔 | 晶体生长不紧密堆积 | 5~200nm | 见于骨架颗粒或胶结物晶体接触面 |
溶蚀孔 | 溶蚀作用 | 200~1200nm | 见于长石、方解石等化学性质不稳定矿物中 |
微裂缝 | |||
层间页理缝 | 沉积成岩及构造作用 | 10nm~60μm | 多数被完全填充 |
层面滑移缝 | 沉积成岩及构造作用 | 10nm~40μm | |
成岩收缩缝 | 成岩作用 | 5nm~100μm | |
有机质演化异常压裂缝 | 有机质演化局部异常压力作用 | 5nm~100μm | 裂缝面不规整,多充填有机质 |
孔隙类型 | 成因机制 | 孔径 | 常见分布特征 |
---|---|---|---|
有机质孔 | 有机质成熟生烃 | 2~1000nm | 常以近球形、椭圆形、凹坑状或片麻状等分布于热演化程度较高的有机质中 |
无机孔 | |||
粒间孔 | 矿物颗粒堆积形成 | 5~1200nm | 多见于软硬颗粒接触面和黏土矿物聚合体中 |
粒内孔 | 矿物成岩转化 | 8~100nm | 多见于层状或薄片状黏土矿物颗粒层间 |
晶间孔 | 晶体生长不紧密堆积 | 5~200nm | 见于骨架颗粒或胶结物晶体接触面 |
溶蚀孔 | 溶蚀作用 | 200~1200nm | 见于长石、方解石等化学性质不稳定矿物中 |
微裂缝 | |||
层间页理缝 | 沉积成岩及构造作用 | 10nm~60μm | 多数被完全填充 |
层面滑移缝 | 沉积成岩及构造作用 | 10nm~40μm | |
成岩收缩缝 | 成岩作用 | 5nm~100μm | |
有机质演化异常压裂缝 | 有机质演化局部异常压力作用 | 5nm~100μm | 裂缝面不规整,多充填有机质 |
类型 | 定义 | 数学表达式 | 说明 |
---|---|---|---|
Π m | 存在于中性分子或原子之间的一种弱碱性的电性吸引力 | ∏ m(h)= | 分子间作用力是分离压力中被研究最多的部分[ Melrose[ |
Π e | 在电解质水溶液中具有相似或相反电荷的两个表面之间的相互用[ | | ε 0在真空中是电常数,F·m-1;ε是液体的相对介电常数,量纲为1;ζ 1和ζ 2分别是固-液和液-气界面的电位,mV。通常,分离压力的静电力分量决定了黏土表面水膜的稳定性 |
Π s | 具有改变水分子结构的边界层被称为水化层。两个界面的水化层相互靠近时,将发生重叠并导致两个界面的排斥或吸引[ | ∏ s(h)=ke | 结构力通常是距离小于5nm的短程相互作用力[ Churaev[ |
类型 | 定义 | 数学表达式 | 说明 |
---|---|---|---|
Π m | 存在于中性分子或原子之间的一种弱碱性的电性吸引力 | ∏ m(h)= | 分子间作用力是分离压力中被研究最多的部分[ Melrose[ |
Π e | 在电解质水溶液中具有相似或相反电荷的两个表面之间的相互用[ | | ε 0在真空中是电常数,F·m-1;ε是液体的相对介电常数,量纲为1;ζ 1和ζ 2分别是固-液和液-气界面的电位,mV。通常,分离压力的静电力分量决定了黏土表面水膜的稳定性 |
Π s | 具有改变水分子结构的边界层被称为水化层。两个界面的水化层相互靠近时,将发生重叠并导致两个界面的排斥或吸引[ | ∏ s(h)=ke | 结构力通常是距离小于5nm的短程相互作用力[ Churaev[ |
矿物质 | 孔隙形态 | 孔隙类型 | 比表面积 /m2·g-1 | 单层含水量/g水·g黏土 -1 |
---|---|---|---|---|
高岭石 | 狭缝状、不规则形状 | 大孔、中孔 | 11~15 | 0.022±0.010 |
伊利石 | 矩形、三角形、狭缝状 | 大孔、毛细孔 | 21~30 | 0.065±0.032 |
蒙脱石 | 狭缝状、圆形 | 大孔、中孔、毛细孔、微孔 | 26~50 | 0.063±0.036 |
石英 | — | — | 0.02 | — |
矿物质 | 孔隙形态 | 孔隙类型 | 比表面积 /m2·g-1 | 单层含水量/g水·g黏土 -1 |
---|---|---|---|---|
高岭石 | 狭缝状、不规则形状 | 大孔、中孔 | 11~15 | 0.022±0.010 |
伊利石 | 矩形、三角形、狭缝状 | 大孔、毛细孔 | 21~30 | 0.065±0.032 |
蒙脱石 | 狭缝状、圆形 | 大孔、中孔、毛细孔、微孔 | 26~50 | 0.063±0.036 |
石英 | — | — | 0.02 | — |
温度/℃ | 相对湿度/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KOH | LiCl·xH2O | CH3COOK | MgCl2·6H2O | K2CO3·2H2O | Mg(NO3)2·H2O | NaBr | KI | NaCl | (NH4)2SO4 | KCl | KNO3 | K2SO4 | |
25 | 8 | 11 | 23 | 33 | 43 | 53 | 58 | 69 | 75 | 81 | 84 | 94 | 97 |
30 | 7 | 11 | 22 | 32 | 43 | 51 | 56 | 68 | 75 | 81 | 84 | 92 | 97 |
40 | 6 | 11 | — | 32 | — | 48 | 53 | 66 | 75 | 80 | 82 | 89 | 96 |
温度/℃ | 相对湿度/% | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
KOH | LiCl·xH2O | CH3COOK | MgCl2·6H2O | K2CO3·2H2O | Mg(NO3)2·H2O | NaBr | KI | NaCl | (NH4)2SO4 | KCl | KNO3 | K2SO4 | |
25 | 8 | 11 | 23 | 33 | 43 | 53 | 58 | 69 | 75 | 81 | 84 | 94 | 97 |
30 | 7 | 11 | 22 | 32 | 43 | 51 | 56 | 68 | 75 | 81 | 84 | 92 | 97 |
40 | 6 | 11 | — | 32 | — | 48 | 53 | 66 | 75 | 80 | 82 | 89 | 96 |
模型 | 数学形式 | 模型参数 | 参考文献 |
---|---|---|---|
BET | | M m,C ① | [ |
Guggenheim-Anderson-de-Boer (GAB) | M=M m Cka w/(1-ka w)[1+(c-1)ka w] | M m,C,k ② | [ |
Halsey | a w=exp(-a/RT | a,r ③ | [ |
Oswin | M=A | A,m ④ | [ |
模型 | 数学形式 | 模型参数 | 参考文献 |
---|---|---|---|
BET | | M m,C ① | [ |
Guggenheim-Anderson-de-Boer (GAB) | M=M m Cka w/(1-ka w)[1+(c-1)ka w] | M m,C,k ② | [ |
Halsey | a w=exp(-a/RT | a,r ③ | [ |
Oswin | M=A | A,m ④ | [ |
1 | 张烈辉,唐洪明,陈果,等 .川南下志留统龙马溪组页岩吸附特征及控制因素[J]. 天然气工业,2014,34(12):63-69. |
ZHANG L H , TANG H M , CHEN G ,et al . Adsorption capacity and controlling factors of the lower Silurian Longmaxi Shale Play in southern Sichuan basin[J]. Natural Gas Industry,2014,34(12):63-69. | |
2 | CURTIS J B . Fractured shale-gas systems[J]. AAPG Bulletin,2002,86(11):1921-1938. |
3 | LI J , LI X F , WANG X Z ,et al . Water distribution characteristic and effect on methane adsorption capacity in shale clay[J].International Journal of Coal Geology,2016,159:135-154. |
4 | ROSS D J K , BUSTIN R M .Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada[J].Bulletin of Canadian Petroleum Geology,2007,55(1):51-75. |
5 | JI W M , SONG Y , JIANG Z X ,et al . Geological controls and estimation algorithms of lacustrine shale gas adsorption capacity: a case study of the Triassic strata in the southeastern Ordos basin, China[J]. International Journal of Coal Geology,2014,134/135:61-73. |
6 | 霍培丽,张登峰,王倩倩,等 .页岩吸附性能及作用规律[J]. 化工进展,2016,35(1):74-82. |
HUO P L , ZHANG D F , WANG Q Q ,et al . Perspective of adsorption performance of shale[J]. Chemical Industry and Engineering Progress,2016,35(1):74-82. | |
7 | 谢松彬,姚艳斌,陈基瑜,等 .煤储层微小孔孔隙结构的低场核磁共振研究[J]. 煤炭学报,2015,40(s1):170-176. |
XIE S B , YAO Y B , CHEN J Y ,et al . Research of micro-pore structure in coal reservoir using low-field NMR[J]. Journal of China Coal Society,2015,40(s1):170-176. | |
8 | 陈尚斌,朱炎铭,王红岩,等 .川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J]. 煤炭学报,2012,3:438-444. |
CHEN S B , ZHU Y M , WANG H Y ,et al . Structure characteristics and accumulation significance of nanopores in Longmaxi shale gas reservoir in the southern Sichuan basin[J]. Journal of China Coal Society,2012,3:438-444. | |
9 | YANG F , XIE C J , NING Z F ,et al . High-pressure methane sorption on dry and moisture-equilibrated shales[J]. Energy & Fuels,2016,31(1):482-492. |
10 | MERKEL A , FINK R , LITTKE R . The role of pre-adsorbed water on methane sorption capacity of bossier and haynesville shales[J].International Journal of Coal Geology,2015,147:1-8. |
11 | GASPARIK M , GHANIZADEH A , GENSTERBLUM Y ,et al . “Multi-temperature” method for high-pressure sorption measurements on moist shales[J]. Review of Scientific Instruments,2013,84(8):1-9. |
12 | MERKEL A , FINK R , LITTKE R . High pressure methane sorption characteristics of lacustrine shales from the midland valley basin, Scotland[J]. Fuel,2016,182:361-372. |
13 | ZOLFAGHARI A , DEHGHANPOUR H , HOLYK J . Water sorption behaviour of gas shales: I. Role of clays[J].International Journal of Coal Geology,2017,179:130-138. |
14 | FENG D , LI X F , WANG X Z ,et al . Water adsorption and its impact on the pore structure characteristics of shale clay[J].Applied Clay Science,2018,155:126-138. |
15 | LOUCKS R G , REED R M , RUPPEL S C ,et al . Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin,2012,96(6):1071-1098. |
16 | 郭旭升,李宇平,刘若冰,等 .四川盆地焦石坝地区龙马溪组页岩微观孔隙结构特征及其控制因素[J]. 天然气工业,2014,34(6):9-16. |
GUO X S , LI Y P , LIU R B ,et al . Characteristics and controlling factors of micro-pore structures of Longmaxi Shale Play in the Jiaoshiba area,Sichuan basin[J]. Natural Gas Industry,2014,34(6):9-16. | |
17 | JIAO K , YAO S P , LIU C ,et al . The characterization and quantitative analysis of nanopores in unconventional gas reservoirs utilizing FESEM-FIB and image processing: an example from the lower Silurian Longmaxi Shale, upper Yangtze region, China[J]. International Journal of Coal Geology,2014,128/129:1-11. |
18 | YANG Y F , YAO J , WANG C C ,et al . New pore space characterization method of shale matrix formation by considering organic and inorganic pores[J].Journal of Natural Gas Science and Engineering,2015,27:496-503. |
19 | RYAN B . A discussion on moisture in coal implication for coalbed gas and coal utilization[J]. Mines and Petroleum Resources,2006,1:139-149. |
20 | HUO P L , ZHANG D F , YANG Z ,et al .CO2 geological sequestration: displacement behavior of shale gas methane by carbon dioxide injection[J]. International Journal of Greenhouse Gas Control,2017,66:48-59. |
21 | GASPARIK M , GHANIZADEH A , BERTIER P ,et al . High-pressure methane sorption isotherms of black shales from the Netherlands[J].Energy & Fuels,2012,26(8):4995-5004. |
22 | LI J , LI X F , WU K L ,et al .Water sorption and distribution characteristics in clay and shale: effect of surface force[J].Energy & Fuels,2016,30(11):8863-8874. |
23 | HU Y N , DEVEGOWDA D , STRIOLO A ,et al .Microscopic dynamics of water and hydrocarbon in shale-kerogen pores of potentially mixed wettability[J]. SPE Journal,2015,20(1):112-124. |
24 | 张时音,桑树勋,杨志刚 .液态水对煤吸附甲烷影响的机理分析[J].中国矿业大学学报,2009,38(5):707-712. |
ZHANG S Y , SANG S X , YANG Z G . Mechanism analysis on the effect of liquid water on coal adsorbing methane[J]. Journal of China University of Mining & Technology,2009,38(5):707-712. | |
25 | JIN Z H , FIROOZABADI A . Effect of water on methane and carbon dioxide sorption in clay minerals by Monte Carlo simulations[J].Fluid Phase Equilibria,2014,382:10-20. |
26 | MAO J D , FANG X W , LAN Y Q ,et al . Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy[J].Geochimica et Cosmochimica Acta,2010,74(7):2110-2127. |
27 | TONG J H , HAN X X , WANG S ,et al . Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD)[J].Energy & Fuels,2011,25(9):4006-4013. |
28 | 夏阳超,刘晓阳,刘生玉 .褐煤表面含氧官能团对水分子的吸附机理[J].煤炭转化,2016,39(4):1-5,9. |
XIA Y C , LIU X Y , LIU S Y . Adsorption mechanism of water molecule onto oxygen containing functional groups of lignite[J]. Coal Conversion,2016,39(4):1-5,9. | |
29 | 吴大清,刁桂仪,魏俊峰,等 .矿物表面基团与表面作用[J].高校地质学报,2000,6(4):225-232. |
WU D Q , DIAO G Y , WEI J F ,et al . Surface function groups and surface reactions of minerals[J]. Geological Journal of China Universities,2000,6(4):225-232. | |
30 | DERJAGUIN B V , CHURAEV N V , MULLER V M ,et al . Surface forces[M]. New York: Consultants Bureau,Wiley,1987. |
31 | PAUNOVA V N , DIMOVA R I , KRALCHEVSKY P A ,et al . The hydration repulsion between charged surfaces as an interplay of volume exclusion and dielectric saturation effects[J]. Journal of Colloid and Interface Science,1996,182(1):239-248. |
32 | IWAMATSU M , HORII K . Capillary condensation and adhesion of two wetter surfaces[J].Journal of Colloid and Interface Science,1996,182(2):400-406. |
33 | TULLER M ,OR D, DUDLEY L M . Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores[J].Water Resources Research,1999,35(7):1949-1964. |
34 | MATTIA D , STAROV V , SEMENOV S . Thickness, stability and contact angle of liquid films on and inside nanofibres, nanotubes and nanochannels[J].Journal of Colloid and Interface Science,2012,384:149-156. |
35 | MELROSE J C . Interpretation of mixed wettability states in reservoir rock[C]//Society of Petroleum Engineers.APE Annual Technical Conference and Exhibition. New Orleans, Louisiana,1982. |
36 | TAKAHASHI S , KOVSCEK A R . Wettability estimation of low-permeability, siliceous shale using surface forces[J].Journal of Petroleum Science and Engineering,2010,75(1/2):33-43. |
37 | KHILAR K C , FOGLER H S .Migrations of fines in porous media (Chapter 3)[M].Boston: Kluwer Academic Publishers,2010. |
38 | CHURAEV N V . Contact angles and surface forces[J].Advances in Colloid and Interface Science,1995,58(2):87-118. |
39 | CHURAEV N V . The relation between colloid stability and wetting[J].Journal of Colloid and Interface Science,1995,172(2):479-484. |
40 | 王茂桢,柳少波,任拥军,等 .页岩气储层粘土矿物孔隙特征及其甲烷吸附作用[J].地质论评,2015,61(1):207-216. |
WANG M Z , LIU S B , REN Y J ,et al . Pore characteristics and methane adsorption of clay minerals in shale gas reservoir[J]. Geological Review,2015,61(1):207-216. | |
41 | CHAVEZ-PAEZ M , WORKUM K V , PABLO L D ,et al . Monte Carlo simulations of Wyoming sodium montmorillonite hydrates[J]. Journal of Chemical Physics,2001,114(3):1405-1413. |
42 | LEIGH M C , JACKSON W R , CHAFFEE A L ,et al . Understanding brown coal-water interactions to reduce carbon dioxide emissions[C]//221st National Meeting of the American-Chemical-Society,San Diego,CA. 2002:203-250. |
43 | MULLER E A , RULL L F , VEGA L F ,et al . Adsorption of water on activated carbons: a molecular simulation study[J].Journal of Physical Chemistry,1996,100:1189-1196. |
44 | SKAAR C . Wood water relations[M]. Berlin:Springer Verlag,1988. |
45 | CASES J M , VILLIERAS F . The mechanisms of ionic and non-ionic surfactants adsorption-abstraction on heterogeneous surfaces[J]. Langmuir,1992,8(2):26. |
46 | YANG F , NING Z F , YANG Q W ,et al . Pore structure characteristics of lower Silurian shales in the southern Sichuan basin, China: insights to pore development and gas storage mechanism[J].International Journal of Coal Geology,2016,156:12-24. |
47 | HATCH C D , WIESE J S , CRANE C C ,et al . Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models[J]. Langmuir,2012,28(3):1790-1803. |
48 | 刘长龄 .我国耐火粘土的矿物类型和化学成分[J].硅酸盐学报,1965,4(3):198-202,213-214. |
LIU C L . Mineral types and chemical composition of refractory clay in China[J]. Journal of the Chinese Ceramic Society,1965,4(3):198-202,213-214. | |
49 | 陈扬杰 .论内蒙老石旦软质粘土矿床的成因[J].西安矿业学院学报,1991,4:25-30. |
CHEN Y J . On the origin of Laoshidan soft clay deposit in Neimenggu[J]. Journal of Xi’an Mining Industry,1991,4:25-30. | |
50 | ROSS D J K , BUSTIN R M . The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs[J].Marine and Petroleum Geology,2009,26(6):916-927. |
51 | GASPARIK M , BERTIER P , GENSTERBLUM Y ,et al . Geological controls on the methane storage capacity in organic-rich shales[J].International Journal of Coal Geology,2014,123:34-51. |
52 | 文进,林元哲,韩成赫,等 . SiO2纳米多孔调湿材料的制备与表征[J]. 合成技术及应用,2017,32(2):18-21. |
WEN J , LIN Y Z , HAN C H ,et al . Preparation and characterization of SiO2 nanoporous humidity controller[J]. Synthetic Technology and Application,2017,32(2):18-21. | |
53 | ISO 483:2005(E).Plastics-small enclosures for conditioning and testing using aqueous solutions to maintain the humidity at a constant value[S]. International Standard,2005. |
54 | CHARRIERE D , BEHRA P . Water sorption on coals[J].Journal of Colloid and Interface Science,2010,344(2):460-467. |
55 | ZIMNY T , FINQUENEISEL G , COSSARUTTO L ,et al . Water vapor adsorption on activated carbon preadsorbed with naphtalene[J]. Journal of Colloidand Interface Science,2005,285(1):56-60. |
56 | SVÁBOVÁ M , WEISHAUPTOVÁ Z , PRIBYL O . Water vapour adsorption on coal[J]. Fuel,2011,90(5):1892-1899. |
57 | CEPONKUS J , ENGDAHL A , UVDAL P ,et al . Structure and dynamics of small water clusters, trapped in inert matrices[J]. Chemical Physics Letters,2013,581:1-9. |
58 | FLETCHER A J , UYGUR Y , THOMAS K M . Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons[J].Journal of Physical Chemistry C,2007,111(23):8349-8359. |
59 | OZBOY O , SAHBAZ F , KOKSEL H . Chemical and physical characterisation of sugar beet fiber[J].Acta Alimentaria,1998,27(2):137-148. |
60 | CHIRIFE J , IGLESIAS H A . Equations for fitting water sorption isotherms of foods: Part 1-a review[J].Journal of Food Technology,1978,13:159-174. |
61 | TSAMI E , KROKIDA M K , DROUZAS A E . Effect of drying method on the sorption characteristics of model fruit powders[J].Journal of Food Engineering,1998,38(4):381-392. |
62 | HALSEY G . Physical adsorption on non-uniform surfaces[J].The Journal of Chemical Physics,1948,16(10):931-937. |
63 | OSWIN C R . The kinetics of package life. Ⅲ. The isotherm[J]. Journal of the Society of Chemical Industry,1946(12):419-421. |
64 | 孙晓晓,姚艳斌,陈基瑜,等 .基于低场核磁共振的煤润湿性分析[J].现代地质,2015,1:190-197. |
SUN X X , YAO Y B , CHEN J Y ,et al . Determination of coal wettability by using low-field nuclear magnetic resonance[J]. Geoscience,2015,1:190-197. | |
65 | 黄伟 .低场核磁共振系统的应用与研究[D].武汉:华中师范大学,2014. |
HUANG W . The low-field NMR system’s application and research[D]. Wuhan:Central China Normal University,2014. | |
66 | ZHU H J , JU Y W , QI Y ,et al . Impact of tectonism on pore type and pore structure evolution in organic-rich shale: Implications for gas storage and migration pathways in naturally deformed rocks[J].Fuel,2018,228:272-289. |
67 | UNSWORTH J F , FOWLER C S , HEARD N A ,et al . Moisture in coal 1. Differentiation between forms of moisture by NMR and microwave attenuation techniques[J]. Fuel,1988,67:1111-1119. |
68 | 热依拉·阿布都瓦依提,马凤云,张翔,等 .低场核磁共振技术在煤炭岩相孔隙结构中的应用[J].核技术,2017,40(12):47-52. |
RAHILA·A,MA F Y, ZHANG X ,et al . Application of low-field nuclear magnetic resonance technology in coal petrographic pore structure[J]. Nuclear Techniques,2017,40(12):47-52. | |
69 | SU S Y , JIANG Z X , SHAN X L ,et al . The wettability of shale by NMR measurements and its controlling factors[J].Journal of Petroleum Science and Engineering,2018,169:309-316. |
70 | 龚国波,孙伯勤,刘买力,等 .岩心孔隙介质中流体的核磁共振弛豫[J].波谱学杂志,2006,23(3):379-395. |
GONG G B , SUN B Q , LIU M L ,et al . NMR relaxation of the fluid in rock porous media[J]. Chinese Journal of Magnetic Resonance,2006,23(3):379-395. | |
71 | 苏怀兴 .褐煤中水分存在形式的实验研究[D].鞍山:辽宁科技大学,2014. |
SU H X . An experimental study on the existing form of water in lignite[D]. Anshan:University of Science and Technology Liaoning,2014. | |
72 | NORINAGA K , KUMAGAI H , J-I HAYASHI ,et al . Classification of water sorbed in coal on the basis of congelation characteristics[J].Energy & Fuels,1998,12(3):574-579. |
73 | KOK M V, SENGULER I . Geological and thermal characterization of Eskisehir region oil shales[J].Journal of Thermal Analysis and Calorimetry,2014,116(1):367-372. |
74 | LIU Q Q , HAN X X , LI Q Y ,et al .TG-DSC analysis of pyrolysis process of two Chinese oil shales[J].Journal of Thermal Analysis and Calorimetry,2014,116(1):511-517. |
75 | 吕事桂,刘学业 .红外热像检测技术的发展和研究现状[J]. 红外技术,2018,40(3):214-219. |
LÜ S G , LIU X Y . Development and research status of infrared thermal image detection technology[J]. Infrared Technology,2018,40(3):214-219. | |
76 | 刘颖韬,郭广平,曾智,等 .红外热像无损检测技术的发展历程、现状和趋势[J].无损检测,2017,39(8):63-70. |
LIU Y T , GUO G P , ZENG Z ,et al . The development history, status and trends of infrared thermographic nondestructive testing[J]. Nondestructive Testing,2017,39(8):63-70. | |
77 | 张城 .红外热成像技术原理及应用前景[J].数字通信世界,2017,2:126-127. |
ZHANG C . Principle and application prospect of infrared thermal imaging technology[J]. Digital Communication World,2017,2:126-127. | |
78 | 李朋朋,康敬东,赵晓蕾 .红外热成像技术及其在沥青路面施工中的应用[J].建设机械技术与管理,2015,28(11):59-62. |
LI P P , KANG J D , ZHAO X L . Application of the infrared thermal imaging technology in the asphalt pavement construction[J]. Construction Machinery Technology and Management,2015,28(11):59-62. | |
79 | 穗积启一郎,廖时萱,李彩娥 .等离子体灰化法的原理和应用[J].国外医学.药学分册,1980,3:164-168. |
HOZUMI K , LIAO S X , LI C E . Principle and application of plasma ashing method[J]. Foreign Medicine. Pharmacology,1980,3:164-168. | |
80 | 柏静儒,潘思慧,王擎,等 .低温灰化中不同有机质的内蒙古油页岩热解特性[J].化工进展,2017,36(7):2428-2435. |
BAI J R , PAN S H , WANG Q ,et al . Pyrolysis characteristics of Inner Mongolia oil shales with different organic matter contents[J]. Chemical Industry and Engineering Progress,2017,36(7):2428-2435. | |
81 | 金梅荪 .等离子体低温灰化技术的进展及其应用[J].辐射防护通讯,1989,4:1-8. |
JIN M S . Advances and applications of plasma low temperature ashing technology[J]. Radiation Protection Communication,1989,4:1-8. | |
82 | 杨燕梅,杨欣华,刘青,等 .灰化温度对准东煤灰组分分析的影响[J].煤炭学报,2016,41(10):2441-2447. |
YANG Y M , YANG X H , LIU Q ,et al . Effect of ashing temperature on analysis of Zhundong coal ash[J]. Journal of China Coal Society,2016,41(10):2441-2447. |
[1] | WANG Shengnan, CHEN Kang, ZHENG Xu. Recent progress of moisture sorbent for adsorption-based atmospheric water harvesting [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3636-3647. |
[2] | XIONG Ying, ZHOU Hou’an, XIONG Gang. COD reduction treatment of flowback water from shale gas hydraulic fracturing based on oxidation with ozonation and ultrasound [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1834-1839. |
[3] | CHANG Xian, YANG Wenjie, LI Shiyang, ZHANG Xiumin, WU Tao, XUE Lixin. Polyvinyl alcohol (PVA) based ternary mixed matrix total heat exchange membranes (THEM) comprising montmorillonite (MMT) and CaCl2: preparation and characterization [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 911-919. |
[4] | WANG Jing, WU Weidong, WANG Hao, LI Zhenbo, LIU Hui. Effects of cooling water flow rate of auxiliary condenser on performance of closed heat pump drying system [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1307-1314. |
[5] | Jianguo LUO, Gang LI, Qiunan LYU, Xiaosen LI, Jiamei MO, Shaohong ZHANG. Tetrahydrofuran (THF) hydrate microscopic occurrence in glass beads [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 123-132. |
[6] | Jinting YUAN, Rui ZENG, Li SHA, Liming LIN, Kaiqiang ZHANG, Shuting ZHANG. Electroosmotic dewatering of high salinity organic pharmaceutical wastewater sludge [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3380-3385. |
[7] | Jiayu LYU, Lilin HU, Tianxing SONG, Yang ZHANG, Hai ZHANG, Suxia MA, Junfu LYU. Occurrence transformation of iron oxides and their catalytic reduction of NO under fluidized bed temperature and CO [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4474-4479. |
[8] | YAN Yecheng, JING Chuanming, SONG Zhanlong, ZHAO Xiqiang, WANG Wenlong, MAO Yanpeng, SUN Jing. Effect of hot air and microwave drying on the quality of coal slime [J]. Chemical Industry and Engineering Progress, 2019, 38(s1): 122-127. |
[9] | Ming CHEN,Fengguo LI,Lanwen HU,Meixia TAO,Yanli SHI,Yan LIU,Xiaojun ZHENG. Occurrence and release of tungsten from river depositions in typical mining areas of southern Jiangxi Province [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4320-4326. |
[10] | LIANG Dingcheng, XIE Qiang. Occurrence, roles in coal conversion processes, and transformation of alkali/alkaline earth metals in coal: a review [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2577-2587. |
[11] | LU Peili, QIU Zhe, ZHANG Daijun, CHENG Wei, CHEN Aoxiang, LEI Bin, YE Hong. Research progress and prospect on the organic pollutants in flowback wastewater from shale gas extraction [J]. Chemical Industry and Engineering Progress, 2018, 37(03): 1161-1166. |
[12] | LIU Jun, MENG Guixiang, YAO Sheng, WANG Zhucheng, XU Kai, HANG Guoqing. Analysis on influence factors of CO2 adsorption kinetics under ultra-low CO2 atmosphere [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 3092-3099. |
[13] | HU Zhibo, ZHENG Shuilin, CHEN Yang, LIU Yangyu, SUN Zhiming. Adsorption characteristic of moisture by precipitated silica including kinetics and thermodynamics analysis [J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1818-1824. |
[14] | ZHOU Shangwen, LI Qi, XUE Huaqing, GUO Wei, LI Xiaobo, LU Bin. Comparative study on the volumetric and gravimetric method for isothermal adsorption experiment of shale [J]. Chemical Industry and Engineering Progress, 2017, 36(05): 1690-1697. |
[15] | ZHANG Fengsan, SHEN Yiding, WANG Lei, MA Guoyan, SU Ying, REN Ting. Synthesis and properties of polyacrylamide drag reducer for fracturing fluid [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3640-3644. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |