Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 449-456.DOI: 10.16085/j.issn.1000-6613.2018-1060
• Materials science and technology • Previous Articles Next Articles
LIUJiaqi1,2(),Hua SHANG1,2,Xuan TANG1,2,Jiangfeng YANG1,2(),Jinping LI1,2
Received:
2018-05-22
Revised:
2018-09-26
Online:
2019-01-05
Published:
2019-01-05
Contact:
Jiangfeng YANG
刘佳奇1,2(),尚华1,2,唐轩1,2,杨江峰1,2(),李晋平1,2
通讯作者:
杨江峰
作者简介:
刘佳奇(1993—),男,博士研究生,研究方向为分子筛的合成与改性。E-mail:<email>liujiaqi0550@link.tyut.edu.cn</email>。|杨江峰,副教授,研究方向为气体分离。E-mail:<email>yangjiangfeng@tyut.edu.cn</email>。
基金资助:
CLC Number:
LIUJiaqi, Hua SHANG, Xuan TANG, Jiangfeng YANG, Jinping LI. Zeolite based materials for CH4-N2 separation[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 449-456.
刘佳奇, 尚华, 唐轩, 杨江峰, 李晋平. 分子筛基CH4-N2分离材料的研究进展[J]. 化工进展, 2019, 38(01): 449-456.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1060
气体 | 分子量 | 动力学直径/nm | 临界温度 /℃ | 极化率 ×1025 /cm3 | 偶极矩 ×1018 /esu·cm | 四极矩 ×1026 /esu·cm2 |
---|---|---|---|---|---|---|
CH4 | 16 | 0.38 | -82 | 25.93 | 0 | 0 |
N2 | 28 | 0.36 | -147 | 17.40 | 0 | 1.52 |
气体 | 分子量 | 动力学直径/nm | 临界温度 /℃ | 极化率 ×1025 /cm3 | 偶极矩 ×1018 /esu·cm | 四极矩 ×1026 /esu·cm2 |
---|---|---|---|---|---|---|
CH4 | 16 | 0.38 | -82 | 25.93 | 0 | 0 |
N2 | 28 | 0.36 | -147 | 17.40 | 0 | 1.52 |
分子筛膜 | 分离系数(α) | N2渗透速率①×108 /mol·m-2 ·s-1 ·Pa-1 | 参考文献 |
---|---|---|---|
ETS-4 | 5.4 | 1 | [ |
DD3R | 20~45 | 0.01 | [ |
T② | 8.7 | 0.26 | [ |
SSZ-13 | 9 | 2 | [ |
SAPO-34 | 5~7 | 10 | [ |
SAPO-34 | 11.3 | 40 | [ |
SAPO-34 | 7.4 | 43 | [ |
SAPO-34 | 8.6 | 70 | [ |
AlPO-18 | 4.6 | 100 | [ |
分子筛膜 | 分离系数(α) | N2渗透速率①×108 /mol·m-2 ·s-1 ·Pa-1 | 参考文献 |
---|---|---|---|
ETS-4 | 5.4 | 1 | [ |
DD3R | 20~45 | 0.01 | [ |
T② | 8.7 | 0.26 | [ |
SSZ-13 | 9 | 2 | [ |
SAPO-34 | 5~7 | 10 | [ |
SAPO-34 | 11.3 | 40 | [ |
SAPO-34 | 7.4 | 43 | [ |
SAPO-34 | 8.6 | 70 | [ |
AlPO-18 | 4.6 | 100 | [ |
1 | 徐凤银, 云箭, 孟复印 . 低碳经济促进天然气与煤层气产业快速发展[J]. 中国石油勘探, 2011, 16(2): 6-11. |
XU F Y , YUN J , MENG F Y . Low carbon economy booms natural gas and CBM industry[J]. China Petroleum Exploration, 2011, 16(2): 6-11. | |
2 | RUFFORD T E , SMART S , WATSON G C Y , et al . The removal of CO2, and N2, from natural gas:a review of conventional and emerging process technologies[J]. Journal of Petroleum Science & Engineering, 2012, 94/95(9): 123-154. |
3 | 李晋平, 杨江峰 . 浅谈我国煤层气产业的发展[J]. 科技创新与生产力, 2011(8): 20-22. |
LI J P , YANG J F . Brief discussion on development of coal seam gas industry in China[J]. Taiyuan Science and Technology, 2011(8): 20-22. | |
4 | 辜敏, 鲜学福 . 煤层气变压吸附分离理论与技术[M]. 北京: 科学出版社, 2015: 85. |
GU M , XIAN X F . The theory and technology of pressure swing adsorption for coal bed gas separation[M]. Beijing: Science Press, 2015: 85. | |
5 | 郭璞, 李明 . 煤层气中CH4/N2分离工艺研究进展[J]. 化工进展, 2008, 27(7): 963-967. |
GUO P , LI M . Research progress of separation of CH4/N2 in coal-bed methane[J]. Chemical Industry and Engineering Progress, 2008, 27(7): 963-967. | |
6 | 徐如人 . 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 115. |
XU R R . Chemistry—zeolites and porous materials[M]. Beijing: Science Press, 2004: 115. | |
7 | SALEHI R N , SHARIFNIA S , RAHIMPOUR F . Natural gas upgrading by selective separation on zeotype adsorbents[J]. Journal of Natural Gas Science & Engineering, 2018, 54: 37-46. |
8 | ACKLEY M W , YANG R T . Adsorption characteristics of high-exchange clinoptilolites[J]. Industrial & Engineering Chemistry Research, 1991, 30(12): 2523-2530. |
9 | ACKLEY M W , YANG R T . Diffusion in ion-exchanged clinoptilolites[J]. Industrial & Engineering Chemistry Research, 1991, 30(12): 2523-2530. |
10 | JAYARAMAN A , HERNANDEZ-MALDONADO A J , YANG R T , et al . Clinoptilolites for nitrogen/methane separation[J]. Chemical Engineering Science, 2004, 59(12): 2407-2417. |
11 | JAYARAMAN A , YANG R T , CHINN D , et al . Tailored clinoptilolites for nitrogen/methane separation[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5184-5192. |
12 | TARAMASSO M , PEREGO G , NOTARI B . Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides: US4410501[P]. 1983-10-18. |
13 | MINTOVA S , VAHCHM V , ANGELOVA S , et a1 . Kinetic investigation of the effect of Na, K, Li and Ca on the crystallization of titanium silicate ETS-4[J].Zolites, 1997, 18(4): 269-273. |
14 | KUZNICKI S M , BELL V A , PETROVIC I , et al . Small-pored crystalline titanium molecular sieve zeolites and their use in gas separation processes: EP1042225A1[P]. 2003-02-04. |
15 | KUZNICKI S M , BELL V A , NAIR S , et al . A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules[J]. Nature, 2001, 412(6848): 720-724. |
16 | PILLAI R S , PETER S A , JASRA R V . Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4[J]. Microporous and Mesoporous Materials, 2008, 113(1): 268-276. |
17 | DOLAN W B , BUTWELL K F . Selective removal of nitrogen from natural gas by pressure swing adsorption: US6444012B1[P]. 2002-11-13. |
18 | SHANG J , LI G , GU Q , et al . Temperature controlled invertible selectivity for adsorption of N2 and CH4 by molecular trapdoor chabazites[J]. Chemical Communications, 2014, 50(35): 4544-4546. |
19 | REMY T , PETER S A , VAN TENDELOO L , et al . Adsorption and separation of CO2 on KFI zeolites: effect of cation type and Si/Al ratio on equilibrium and kinetic properties[J]. Langmuir,2013, 29(16): 4998-5012. |
20 | PHAM T D , HUDSON M R , BROWN C M , et al . On the structure-property relationships of cation-exchanged ZK-5 zeolites for CO2 adsorption[J]. ChemSusChem, 2017, 10 (5): 946-957. |
21 | YANG J F , KRISHNA R , LI L , et al . Experiments and simulations on separating a CO2/CH4 mixture using K-KFI at low and high pressures[J]. Microporous and Mesoporous Materials, 2014, 184: 21-27. |
22 | YANG J F , SHANG H , KRISHNA R , et al . Adjusting the proportions of extra-framework K+, and Cs+, cations to construct a“molecular gate”on ZK-5 for CO2 removal[J]. Microporous and Mesoporous Materials, 2018, 268: 50-57. |
23 | YANG J F , ZHAO Q , XU H , et al . Adsorption of CO2, CH4, and N2 on gas diameter grade ion-exchange small pore zeolites[J]. Journal of Chemical & Engineering Data, 2012, 57(12): 3701-3709. |
24 | BOWEN T C , NOBLE R D , FALCONER J L . Fundamentals and applications of pervaporation through zeolite membranes[J]. Journal of Membrane Science, 2004, 245(1): 1-33. |
25 | OCKWIG N W , NENOFF T M . Membranes for hydrogen separation[J]. Chemical Reviews, 2007, 107(10): 4078-110. |
26 | GUAN G , KUSAKABE K , MOROOKA S . Synthesis and permeation properties of ion-exchanged ETS-4 tubular membranes[J]. Microporous and Mesoporous Materials, 2001, 50(2): 109-120. |
27 | BERGH J V D , ZHU W , GASCON J , et al . Separation and permeation characteristics of a DD3R zeolite membrane[J]. Journal of Membrane Science, 2008, 316(1): 35-45. |
28 | CUI Y , KITA H , OKAMOTO K . Preparation and gas separation performance of zeolite T membrane[J]. Journal of Materials Chemistry, 2004, 14(5): 924-932. |
29 | WU T , DIAZ M C , ZHENG Y , et al . Influence of propane on CO2/CH4, and N2 /CH4, separations in CHA zeolite membranes[J]. Journal of Membrane Science, 2015, 473: 201-209. |
30 | HUANG Y , WANG L , SONG Z , et al . Growth of high-quality, thickness-reduced zeolite membranes towards N2/CH4 separation using high aspect ratio seeds[J]. Angewandte Chemie, 2015, 54(37): 10843-10847. |
31 | ZONG Z , FENG X , HUANG Y , et al . Highly permeable N2/CH4, separation SAPO-34 membranes synthesized by diluted gels and increased crystallization temperature[J]. Microporous and Mesoporous Materials, 2016, 224: 36-42. |
32 | ZONG Z , CARREON M A . Thin SAPO-34 membranes synthesized instainless steel autoclaves for N2/CH4, separation[J]. Journal of Membrane Science, 2016, 524: 117-123. |
33 |
ZONG Z , ELSAIDI S K , THALLAPALLY P K , et al . Highly permeable AlPO-18 membranes for N2/CH4 separation[J]. Industrial & Engineering Chemistry Research, 2017, 56(14). DOI:10.1021/acs.iecr.7600853.
DOI URL |
34 | TEZEL F H , APOLONATOS G . Chromatographic study of adsorption for N2, CO and CH4 in molecular sieve zeolites[J]. Gas Separation & Purification, 1993, 7(1): 11-17. |
35 | 王德超, 杨志远, 廖宏斌, 等 . CH4和N2在炭分子筛及13X沸石上的吸附分离[J]. 煤炭转化, 2017, 40(2): 73-80. |
WANG D H , YANG Z Y , LIAO H B , et al . Adsorptive separation of CH4 and N2 on carbon molecular sieve and 13X zeolite[J]. Coal Conversion, 2017, 40(2): 73-80. | |
36 | SETHIA G , SOMANI R , CHANDBAJAJ H . Adsorption of carbon monoxide, methane and nitrogen on alkaline earth metal ion exchanged zeolite-X: structure, cation position and adsorption relationship[J]. RSC Advances, 2015, 5(17): 12773-12781. |
37 | SETHIA G , SOMANI R S , BAJAJ H C . Sorption of methane and nitrogen on cesium exchanged zeolite-X: structure, cation position and adsorption relationship[J]. Industrial & Engineering Chemistry Research, 2014, 53(16): 6807-6814. |
38 | 杨江峰 . 基于低浓煤层气CH4/N2吸附分离微孔材料的合成及其性能研究[D]. 太原: 太原理工大学, 2012. |
YANG J F . Research on the properties and synthesis of microporous materials based on the CH4/N2 adsorption separation in the low enriched coalbed methane[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
39 | YANG J F , LI J P , WANG W , et al . Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and beta[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17856-17864. |
40 | 刘海庆, 吴一江, 杨颖, 等 . 沸石ZSM-5吸附回收低浓度煤层气中CH4 [J]. 化工学报, 2016, 67(5): 1931-1941. |
LIU H Q , WU Y J , YANG Y , et al . Adsorption and recovery of low concentration coal-bed methane by zeolite ZSM-5[J]. CIESC Journal, 2016, 67(5): 1931-1941. | |
41 | MAPLE M J , WILLIAMS C D . Separating nitrogen/methane on zeolite-like molecular sieves[J]. Microporous and Mesoporous Materials, 2008, 111(1): 627-631. |
42 | WANG C , LIU J Q , YANG J F , et al . A crystal seeds- assisted synthesis of microporous and mesoporous silicalite-1 and their CO2/N2/CH4/C2H6, adsorption properties[J]. Microporous and Mesoporous Materials, 2017, 242: 231-237. |
43 | 李晋平, 王小青, 杨江峰, 等, 一种以硅溶胶为硅源快速合成介孔Silicalite- 1分子筛的方法: ZL2016101300572[P]. 2016-06-15. |
LI J P , WAMG X Q , YANG J F , et al . A fast synthesis of mesoporous silicalite-1 molecular sieve using silica sol as silicon source: ZL2016101300572[P]. 2016-06-15. | |
44 | 李晋平, 杨江峰, 王畅, 等 . 一种以白炭黑为硅源快速合成介孔 Silicalite-1 分子筛的方法: ZL2016101300322[P]. 2016-06-08. |
LI J P , YANG J F , WANG C , et al . A fast synthesis of mesoporous silicalite-1 molecular sieve using carbon-white as silicon source: ZL2016101300322[P]. 2016-06-08. | |
45 | YANG J F , YUAN N , XU M , et al . Enhanced mass transfer on hierarchical porous pure silica zeolite used for gas separation[J]. Microporous and Mesoporous Materials, 2018, 266: 56-63. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
[3] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
[4] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[5] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[6] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
[7] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
[8] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[9] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[10] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[11] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[12] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[13] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[14] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[15] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |