Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (12): 4726-4734.DOI: 10.16085/j.issn.1000-6613.2018-0144
Previous Articles Next Articles
LIU Liu, ZHANG Songhong, YUN Junxian, YAO Kejian
Received:
2018-01-17
Revised:
2018-03-20
Online:
2018-12-05
Published:
2018-12-05
刘流, 张颂红, 贠军贤, 姚克俭
通讯作者:
张颂红,副教授,硕士生导师,主要研究方向为传质与分离。
作者简介:
刘流(1991-),男,硕士研究生。
基金资助:
CLC Number:
LIU Liu, ZHANG Songhong, YUN Junxian, YAO Kejian. Recent research progress on preparation methods, properties and applications of nanogels[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4726-4734.
刘流, 张颂红, 贠军贤, 姚克俭. 纳凝胶的制备、性能及应用进展[J]. 化工进展, 2018, 37(12): 4726-4734.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0144
[1] MAVUSO S, MARIMUTHU T, CHOONARA Y E, et al.A review of polymeric colloidal nanogels in transdermal drug delivery[J]. Current Pharmaceutical Design, 2015, 21(20):2801-13. [2] SONI G, YADAV K S. Nanogels as potential nanomedicine carrier for treatment of cancer:a mini review of the state of the art[J]. Saudi Pharmaceutical Journal, 2016, 24(2):133-139. [3] NEAMTU I, RUSU A G, DIACONU A, et al. Basic concepts and recent advances in nanogels as carriers for medical applications[J]. Drug Delivery, 2017, 24(1):539-557. [4] SASAKI Y, AKIYOSHI K. Nanogel engineering for new nanobiomaterials:from chaperoning engineering to biomedical applications[J]. Chemical Record, 2010, 10(6):366-376. [5] WANI T U, RASHID M, KUMAR M, et al. Targeting aspects of nanogels:an overview[J]. International Journal of Pharmaceutical Sciences and Nanotechnology, 2014, 7(4):2612-2630. [6] MENG X, EDGAR K J. "Click" reactions in polysaccharide modification[J]. Progress in Polymer Science, 2016, 53:52-85. [7] OH J K, DRUMRIGHT R, SIEGWART D J, et al. The development of microgels/nanogels for drug delivery applications[J]. Progress in Polymer Science, 2008, 33(4):448-477. [8] SONI K S, DESALE S S, BRONICH T K. Nanogels:an overview of properties, biomedical applications and obstacles to clinical translation[J]. Journal of Controlled Release, 2016, 240:109-126. [9] 李祯珍, 周淑彦, 窦红静, 等. 自组装辅助聚合法制备纤维素基温度/pH双敏感性荧光纳米凝胶[J]. 高等学校化学学报, 2013, 35(7):1608-1614. LI Zhenzhen, ZHOU Shuyan, DOU Hongjing, et al. Temperature/pH dual-sensitive fluorescence nano-gel based on cellulose through self-assembly assisted polymerization[J]. Chemical Journal of Chinese Universities, 2013, 35(7):1608-1614. [10] LI Y L, ZHU L, LIU Z, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells[J]. Angewandte Chemie International Edition, 2009, 48(52):9914-9918. [11] 李霏霏, 张娜. 纳米凝胶载体系统的研究进展[J]. 中国药学杂志, 2016, 51(3):177-182. LI Feifei, ZHANG Na. Research progress in nanogel carrier systems[J]. Chinese Pharmaceutical Journal, 2016, 51(3):177-182. [12] PARK C W, YANG H M, LEE H J, et al. Core-shell nanogel of PEG-poly(aspartic acid)and its pH-responsive release of rh-insulin[J]. Soft Matter, 2013, 9(6):1781-1788. [13] ZHANG Y, DING J, LI M, et al. One-step "Click Chemistry"-synthesized cross-linked prodrug nanogel for highly selective intracellular drug delivery and upregulated antitumor efficacy[J]. ACS Applied Materials & Interfaces, 2016, 8(17):10673-10682. [14] DING J, ZHUANG X, XIAO C, et al. Preparation of photo-cross-linked pH-responsive polypeptide nanogels as potential carriers for controlled drug delivery[J]. Journal of Materials Chemistry, 2011, 21(30):11383-11391. [15] 王杨, 顾准. 刺激响应性聚N-乙烯基己内酰胺纳米凝胶的制备及性能研究[J]. 化学与生物工程, 2016, 33(6):39-44. WANG Yang, GU Zhun. Preparation and performance of stimuli-responsive poly(N-vinylcaprolactam)nanogel[J]. Chemistry & Bioengineering, 2016, 33(6):39-44. [16] WANG Y, ZHENG J, TIAN Y, et al. Acid degradable poly(vinylcaprolactam)-based nanogels with ketal linkages for drug delivery[J]. Journal of Materials Chemistry B, 2015, 3(28):5824-5832. [17] 张稳, 韩晓东, 苏红莹, 等. 反相微乳液法制备纳米凝胶的研究进展[J]. 高分子材料科学与工程, 2016, 32(9):178-183. ZHANG Wen, HAN Xiaodong, SU Hongying, et al. Progress in synthesis of nanogels by inverse microemulsion[J]. Polymeric Materials Science and Engineering, 2016, 32(9):178-183. [18] KRISCH E, MESSAGER L, GYARMATI B, et al. Redox-and pH-responsive nanogels based on thiolated poly(aspartic acid)[J]. Macromolecular Materials and Engineering, 2016, 301(3):260-266. [19] LI W, LIU Q, ZHANG P, et al. Zwitterionic nanogels crosslinked by fluorescent carbon dots for targeted drug delivery and simultaneous bioimaging[J]. Acta Biomaterialia, 2016, 40:254-262. [20] KIM H, KIM B, LEE C, et al. Redox-responsive biodegradable nanogels for photodynamic therapy using Chlorin e6[J]. Journal of Materials Science, 2016, 51(18):8442-8451. [21] 龚霞, 胡莹莹, 尤祥宇, 等. RAFT聚合法制备丙烯酰胺纳米凝胶的工艺优化[J]. 化学与生物工程, 2016, 33(10):35-38. GONG Xia, HU Yingying, YOU Xiangyu, et al. Process optimization of acrylamide nanogels prepared by RAFT polymerization[J]. Chemistry & Bioengineering, 2016, 33(10):35-38. [22] ZUO Y, GUO N, JIAO Z, et al. Novel reversible thermos responsive nanogel based on poly(ionic liquid)s prepared via RAFT crosslinking copolymerization[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2016, 54(1):169-178. [23] WHITESIDES G M. The origins and the future of microfluidics[J]. Nature, 2006, 442(7101):368. [24] ZHANG S H, YUN J X, SHEN S C, et al. Formation of solid lipid nanoparticles in a microchannel system with a cross-shaped junction[J]. Chemical Engineering Science, 2008, 63(23):5600-5605. [25] ZHANG S H, SHEN S C, CHEN Z, et al. Preparation of solid lipid nanoparticles in co-flowing microchannels[J]. Chemical Engineering Journal, 2008, 144(2):324-328. [26] 陈卓, 张颂红, 沈绍传, 等. 在T型微通道内制备固体脂质纳米粒(SLN)的实验研究[J]. 高校化学工程学报, 2009, 23(6):927-932. CHEN Zhuo, ZHANG Songhong, SHEN Shaochuan, et al. Preparation of solid lipid nanoparticles in T-shaped junction microchannels[J]. Journal of Chemical Engineering of Chinese Universities, 2009, 23(6):927-932. [27] AKHTER K F, MUMIN M A, LUI E K, et al. Microfluidic synthesis of ginseng polysaccharide nanoparticles for immunostimulating action on macrophage cell lines[J]. ACS Biomaterials Science & Engineering, 2015, 2(1):96-103. [28] BAZBAN-SHOTORBANI S, DASHTIMOGHADAM E, KARKHANEH A, et al. Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery[J]. Langmuir, 2016, 32(19):4996-5003. [29] BAZBAN-SHOTORBANI S, DASHTIMOGHADAM E, KARKHANEH A, et al. Microfluidic directed synthesis of alginate nanogels with tunable pore size for efficient protein delivery[J]. Langmuir, 2016, 32(19):4996-5003. [30] TAPIA-HERNÁNDEZ J A, TORRES-CHÁVEZ P I, RAMÍREZ-WONG B, et al. Micro-and nanoparticles by electrospray:advances and applications in foods[J]. Journal of Agricultural and Food Chemistry, 2015, 63(19):4699-4707. [31] CHEN J, DAI H, LIN H, et al. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane)nanogels[J]. Colloids and Surfaces B:Biointerfaces, 2016, 141:278-283. [32] SIRÉS I, BRILLAS E, OTURAN M A, et al. Electrochemical advanced oxidation processes:today and tomorrow. A review[J]. Environmental Science and Pollution Research, 2014, 21(14):8336-8367. [33] LANZALACO S, SIRÉS I, SABATINO M A, et al. Synthesis of polymer nanogels by electro-Fenton process:investigation of the effect of main operation parameters[J]. Electrochimica Acta, 2017, 246:812-822. [34] GONÇALVES C, PEREIRA P, GAMA M. Self-assembled hydrogel nanoparticles for drug delivery applications[J]. Materials, 2010, 3(2):1420-1460. [35] KAZAKOV S, LEVON K. Liposome-nanogel structures for future pharmaceutical applications[J]. Current Pharmaceutical Design, 2006, 12(36):4713-4728. [36] SULTANA F, IMRAN-UL-HAQUE M, ARAFAT M, et al. An overview of nanogel drug delivery system[J]. Journal of Applied Pharmaceutical Science, 2013, 3(8):S95-S105. [37] WU H Q, WANG C C. Biodegradable smart nanogels:a new platform for targeting drug delivery and biomedical diagnostics[J]. Langmuir, 2016, 32(25):6211-6225. [38] 马天泽, 李雪婷, 赵迪, 等. 多重响应的单分散聚(N-异丙基丙烯酰胺-co-丙烯酸)纳米水凝胶的制备及性能表征[J]. 功能高分子学报, 2015, 28(3):307-312. MA Tianze, LI Xueting, ZHAO Di, et al. Preparation and performance characterization of multiple responsive and monodisperse poly(N-isopropylacrylamide-co-acrylic acid) nanogels[J]. Journal of Functional Polymers, 2015, 28(3):307-312. [39] ZHANG Z J, WANG J, NIE X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. Journal of the American Chemical Society, 2014, 136(20):7317-7326. [40] PANJA S, DEY G, BHARTI R, et al. Metal ion ornamented ultra-fast light-sensitive nanogel for potential in vivo cancer therapy[J]. Chemistry of Materials, 2016, 28(23):8598-8610. [41] CAZARES-CORTES E, ESPINOSA A, GUIGNER J M, et al. Doxorubicin Intracellular remote release from biocompatible oligo(ethylene glycol) methyl ether methacrylate-based magnetic nanogels triggered by magnetic hyperthermia[J]. ACS Applied Materials & Interfaces, 2017, 9(31):25775-25788. [42] SADIGHIAN S, ROSTAMIZADEH K, HAMIDI M, et al. Magnetic nanogels as dual triggered anticancer drug delivery:toxicity evaluation on isolated rat liver mitochondria[J]. Toxicology Letters, 2017, 278:18-29. [43] WEN X, QIAO X, HAN X, et al. Multifunctional magnetic branched polyethylenimine nanogels with in-situ generated Fe3O4 and their applications as dye adsorbent and catalyst support[J]. Journal of Materials Science, 2016, 51(6):3170-3181. [44] ZHANG Q, ZHA L, MA J, et al. A novel route to prepare pH-and temperature-sensitive nanogels via a semibatch process[J]. Journal of Colloid and Interface Science, 2009, 330(2):330-336. [45] ZHANG K, WU X Y. Temperature and pH-responsive polymeric composite membranes of controlled delivery of protein and peptides[J]. Biomaterials, 2004, 25(22):5281-5291. [46] HE J, TONG X, ZHAO Y. Photo responsive nanogels based on photo controllable cross-links[J]. Macromolecules, 2009, 42(13):4845-4852. [47] 王晔晨, 全微雷, 张金敏, 等. 磁性聚合物微球的制备及其应用研究进展[J]. 化工进展, 2017, 36(8):2971-2977. WANG Yechen, QUAN Weilei, ZHANG Jinmin, et al. Progress in preparation and application of magnetic polymer microspheres[J]. Chemical Industry and Engineering Progress, 2017, 36(8):2971-2977. [48] SUN H W, ZHANG L Y, ZHU X J, et al. Poly(PEGMA)magnetic nanogels:preparation via photochemical method, characterization and application as drug carrier[J]. Science in China Series B:Chemistry, 2009, 52(1):69-75. [49] ZAREKAR N S, LINGAYAT V J, PANDE V V. Nanogel as a novel platform for smart drug delivery system[J]. Nanoscience and Nanotechnology Research, 2017, 4(1):25-31. [50] YANG G, WANG X, FU S, et al. pH-triggered chitosan nanogels via an ortho ester-based linkage for efficient chemotherapy[J]. Acta Biomaterialia, 2017, 60(15):232-243. [51] BRANNIGAN R P, KHUTORYANSKIYV V. Synthesis and evaluation of mucoadhesive acryloyl-quaternized PDMAEMA nanogels for ocular drug delivery[J]. Colloids and Surfaces B:Biointerfaces, 2017, 155:538-543. [52] SIERRA-MARTIN B, FERNANDEZ-BARBERO A. Inorganic/polymer hybrid nanoparticles for sensing applications[J]. Advances in Colloid and Interface Science, 2016, 233:25-37. [53] WU W, MITRA N, YAN E C, et al. Multifunctional hybrid nanogel for integration of optical glucose sensing and self-regulated insulin release at physiological pH[J]. ACS Nano, 2010, 4(8):4831-4839. [54] HONG J, XU D, GONG P, et al. Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels[J]. Microporous and Mesoporous Materials, 2008, 109(1-3):470-477. [55] JI X, LIU J, LIU L, et al. Enzyme-polymer hybrid nanogels fabricated by thiol-disulfide exchange reaction[J]. Colloids and Surfaces B:Biointerfaces, 2016, 148:41-48. [56] AHMED I N, CHANG R, TSAI W B. Poly(acrylic acid)nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose[J]. Colloids and Surfaces B:Biointerfaces, 2017, 152:339-343. [57] ZHU J, SUN W, SHI X. Nanogels as contrast agents for molecular imaging[J]. Chinese Journal of Chemistry, 2016, 34(6):547-557. [58] CARO C, GARCÍA-MARTÍN M L, PERNIALEAL M. Manganese-based nanogels as pH switches for magnetic resonance imaging[J]. Biomacromolecules, 2017, 18(5):1617-1623. [59] SUN W, YANG J, ZHU J, et al. Immobilization of iron oxide nanoparticles within alginate nanogels for enhanced MR imaging applications[J]. Biomaterials Science, 2016, 4(10):1422-1430. [60] LEE K W, CHUNG J W, KWAK S Y. Synthesis and characterization of bio-based alkyl terminal hyperbranched polyglycerols:a detailed study of their plasticization effect and migration resistance[J]. Green Chemistry, 2016, 18(4):999-1009. [61] SARASWATHY M, STANSBURY J, NAIR D. Thiol-functionalized nanogels as reactive plasticizers for crosslinked polymer networks[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74:296-303. [62] SAVIC I M, STOJILJKOVIC S T, STOJANOVIC S B, et al. Modeling and optimization of Fe(Ⅲ) adsorption from water using bentonite clay:comparison of central composite design and artificial neural network[J]. Chemical Engineering & Technology, 2012, 35(11):2007-2014. [63] AKL M A, SARHAN A A, SHOUEIR K R, et al. Application of crosslinked ionic poly(vinyl alcohol)nanogel as adsorbents for water treatment[J]. Journal of Dispersion Science and Technology, 2013, 34(10):1399-1408. [64] MAHIDA V P, PATEL M P. Removal of some most hazardous cationic dyes using novel poly(NIPAAm/AA/N-allylisatin) nanohydrogel[J]. Arabian Journal of Chemistry, 2016, 9(3):430-442. |
[1] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[2] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[3] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[4] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[5] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[6] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[7] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[8] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
[9] | YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768. |
[10] | GAO Jiangyu, ZHANG Yaojun, HE Panyang, LIU Licai, ZHANG Fengye. Recent progress on the fabrication and properties of phosphobase geopolymer [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1411-1425. |
[11] | ZHANG Yuxin, WANG Can, SHU Wenxiang. Research progress of carbon dioxide reduction and utilization [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 944-956. |
[12] | WANG Xiaoliang, YU Zhenqiu, CHANG Leiming, ZHAO Haonan, SONG Xiaoqi, GAO Jingsong, ZHANG Yibo, HUANG Chuanhui, LIU Yi, YANG Shaobin. Research progress in the preparation of hydroxide/oxide supercapacitor electrodes by electrodeposition [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5272-5285. |
[13] | LIU Huihui, SHI Xiaofei, WANG Qiannan, LIU Jinbo, ZHANG Jing. Preparation of pH responsive magnetic mesoporous nanoparticle drug loading system [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5390-5398. |
[14] | YANG Kailu, CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Research progress of preparation and modification of nanofiltration membrane for dye wastewater treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5470-5486. |
[15] | LI Zhaoming, SHEN Boxiong, FENG Shuo, BIAN Yao. Effect of structure and morphology on manganese-based catalysts’ sulfur and water resistance [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 226-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |