Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (2): 944-956.DOI: 10.16085/j.issn.1000-6613.2022-0705
• Resources and environmental engineering • Previous Articles Next Articles
ZHANG Yuxin1(), WANG Can1, SHU Wenxiang2
Received:
2022-04-20
Revised:
2022-08-13
Online:
2023-03-13
Published:
2023-02-25
Contact:
ZHANG Yuxin
通讯作者:
张育新
作者简介:
张育新(1978—),男,博士,教授,博士生导师,研究方向为环保新材料。E-mail:zhangyuxin@cqu.edu.cn。
基金资助:
CLC Number:
ZHANG Yuxin, WANG Can, SHU Wenxiang. Research progress of carbon dioxide reduction and utilization[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 944-956.
张育新, 王灿, 舒文祥. 二氧化碳的还原及其利用研究进展[J]. 化工进展, 2023, 42(2): 944-956.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0705
1 | DINH C T, BURDYNY T, KIBRIA M G, et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface[J]. Science, 2018, 360(6390): 783-787. |
2 | Dieter LÜTHI, LE FLOCH Martine, BEREITER Bernhard, et al. High-resolution carbon dioxide concentration record 650000—800000 years before present[J]. Nature, 2008, 453(7193): 379-382. |
3 | LIANG Jiaojiao, WEI Zengxi, WANG Caiyun, et al. Vacancy-induced sodium-ion storage in N-doped carbon nanofiber@MoS2 nanosheet arrays[J]. Electrochimica Acta, 2018, 285: 301-308. |
4 | GUO Renhao, LIU Ching-Fang, WEI Tzu-Chien, et al. Electrochemical behavior of CO2 reduction on palladium nanoparticles: Dependence of adsorbed CO on electrode potential[J]. Electrochemistry Communications, 2017, 80: 24-28. |
5 | LIU Weiqi, QI Jiawei, BAI Peiyao, et al. Utilizing spatial confinement effect of N atoms in micropores of coal-based metal-free material for efficiently electrochemical reduction of carbon dioxide[J]. Applied Catalysis B: Environmental, 2020, 272: 118974. |
6 | WU Yimin A, MCNULTY Ian, LIU Cong, et al. Author correction: Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol[J]. Nature Energy, 2020, 5(1): 89. |
7 | QIAO Jinli, LIU Yuyu, HONG Feng, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675. |
8 | KLANKERMAYER J, LEITNER W. Harnessing renewable energy with CO2 for the chemical value chain: Challenges and opportunities for catalysis[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2061): 20150315. |
9 | PERATHONER S, CENTI G. CO2 recycling: A key strategy to introduce green energy in the chemical production chain[J]. ChemSusChem, 2014, 7(5): 1274-1282. |
10 | TING Louisa Rui Lin, Boon Siang YEO. Recent advances in understanding mechanisms for the electrochemical reduction of carbon dioxide[J]. Current Opinion in Electrochemistry, 2018, 8: 126-134. |
11 | WHITE James L, BARUCH Maor F, PANDER III James E, et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes[J]. Chemical Reviews, 2015, 115(23): 12888-12935. |
12 | PAN Binbin, ZHU Xiaorong, WU Yunling, et al. Toward highly selective electrochemical CO2 reduction using metal-free heteroatom-doped carbon[J]. Advanced Science, 2020, 7(16): 2001002. |
13 | PETER Sebastian C. Reduction of CO2 to chemicals and fuels: A solution to global warming and energy crisis[J]. ACS Energy Letters, 2018, 3(7): 1557-1561. |
14 | ZHU Dong dong, LIU Jinlong, QIAO Shizhang. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452. |
15 | KONDRATENKO Evgenii V, Guido MUL, BALTRUSAITIS Jonas, et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy & Environmental Science, 2013, 6(11): 3112-3135. |
16 | GALLO Alessandro, SNIDER Jonathan L, SOKARAS Dimosthenis, et al. Ni5Ga3 catalysts for CO2 reduction to methanol: Exploring the role of Ga surface oxidation/reduction on catalytic activity[J]. Applied Catalysis B: Environmental, 2020, 267: 118369. |
17 | NAHAR S, ZAIN M F M, KADHUM A A H, et al. Advances in photocatalytic CO₂ reduction with water: A review[J]. Materials, 2017, 10(6): 629. |
18 | SILVA Wanderson O, SILVA Gabriel C, WEBSTER Richard F, et al. Electrochemical reduction of CO2 on nitrogen-doped carbon catalysts with and without iron[J]. ChemElectroChem, 2019, 6(17): 4626-4636. |
19 | YANG Hui, HAN Na, DENG Jun, et al. Selective CO2 reduction on 2D mesoporous Bi nanosheets[J]. Advanced Energy Materials, 2018, 8(35): 1801536. |
20 | KIM Cheonghee, Taedaehyeong EOM, Michael Shincheon JEE, et al. Insight into electrochemical CO2 reduction on surface-molecule-mediated Ag nanoparticles[J]. ACS Catalysis, 2017, 7(1): 779-785. |
21 | KUMAR Bijandra, BRIAN Joseph P, ATLA Veerendra, et al. New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction[J]. Catalysis Today, 2016, 270: 19-30. |
22 | ROSEN Jonathan, HUTCHINGS Gregory S, LU Qi, et al. Electrodeposited Zn dendrites with enhanced CO selectivity for electrocatalytic CO2 reduction[J]. ACS Catalysis, 2015, 5(8): 4586-4591. |
23 | SOHN Youngku, HUANG Weixin, TAGHIPOUR Fariborz. Recent progress and perspectives in the photocatalytic CO2 reduction of Ti-oxide-based nanomaterials[J]. Applied Surface Science, 2017, 396: 1696-1711. |
24 | RASUL S, ANJUM D H, JEDIDI A, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO[J]. Angewandte Chemie International Edition, 2015, 54(7): 2146-2150. |
25 | CHEN Yihong, KANAN Matthew W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts[J]. Journal of the American Chemical Society, 2012, 134(4): 1986-1989. |
26 | CHEN Yihong, LI Christina W, KANAN Matthew W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles[J]. Journal of the American Chemical Society, 2012, 134(49): 19969-19972. |
27 | LEE Chang Hoon, KANAN Matthew W. Controlling H+ vs. CO2 reduction selectivity on Pb electrodes[J]. ACS Catalysis, 2015, 5(1): 465-469. |
28 | LIU Cong, CUNDARI Thomas R, WILSON Angela K. CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: In comparison with homogeneous catalysis[J]. The Journal of Physical Chemistry C, 2012, 116(9): 5681-5688. |
29 | 桂霞, 王陈魏, 云志, 等. 燃烧前CO2捕集技术研究进展[J]. 化工进展, 2014, 33(7): 1895-1901. |
GUI Xia, WANG Chenwei, YUN Zhi, et al. Research progress of pre-combustion CO2 capture[J]. Chemical Industry and Engineering Progress, 2014, 33(7): 1895-1901. | |
30 | 李新春, 孙永斌. 二氧化碳捕集现状和展望[J]. 能源技术经济, 2010, 22(4): 21-26. |
LI Xinchun, SUN Yongbin. Status quo and prospect of the carbon dioxide capture[J]. Energy Technology and Economics, 2010, 22(4): 21-26. | |
31 | 费维扬, 艾宁, 陈健. 温室气体CO2的捕集和分离——分离技术面临的挑战与机遇[J]. 化工进展, 2005, 24(1): 1-4. |
FEI Weiyang, AI Ning, CHEN Jian. Capture and separation of greenhouse gases CO2—The challengeand opportunity for separation technology[J]. Chemical Industry and Engineering Progress, 2005, 24(1): 1-4. | |
32 | 徐永辉, 肖宝华, 冯艳艳, 等. 二氧化碳捕集材料的研究进展[J]. 精细化工, 2021, 38(8): 1513-1521. |
XU Yonghui, XIAO Baohua, FENG Yanyan, et al. Research progress of carbon dioxide capture materials[J]. Fine Chemicals, 2021, 38(8): 1513-1521. | |
33 | 张锁江, 周清, 吕兴梅, 等. 二氧化碳的捕集分离与减排技术[C]//第十届中国科协年会第18分会二氧化碳减排和绿色化利用与发展研讨会论文集. 郑州, 2008: 42. |
ZHANG Suojiang, ZHOU Qing, Xingmei LYU, et al. Carbon dioxide capture, separation and emission reduction technology[C]// Proceedings of the 10th Annual Meeting of China Association for Science and Technology, The 18th Session of the Symposium on Carbon Dioxide Reduction and Green Utilization and Development. Zhengzhou, 2008: 42. | |
34 | OLHOFF A, NEUFELDT H, NASWA P, et al. The adaptation gap report. towards global assessment[R]. Environmental Science, Corpus ID: 187395260, 2017 |
35 | OZKAN Mihrimah, NAYAK Saswat Priyadarshi, RUIZ Anthony D, et al. Current status and pillars of direct air capture technologies[J]. iScience, 2022, 25(4): 103990. |
36 | ALVES M, GRIGNARD B, MEREAU R, et al. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: Catalyst design and mechanistic studies[J]. Catalysis Science & Technology, 2017, 7(13): 2651-2684. |
37 | LAN Donghui, FAN Na, WANG Ying, et al. Recent advances in metal-free catalysts for the synthesis of cyclic carbonates from CO2 and epoxides[J]. Chinese Journal of Catalysis, 2016, 37(6): 826-845. |
38 | LIU Huiling, ZHU Yating, MA Jianmin, et al. Atomically thin catalysts: Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction[J]. Advanced Functional Materials, 2020, 30(17): 2070107. |
39 | 李亮星. 卤化物——碳酸锂熔盐体系CO2电解制备C和O2 [D]. 沈阳: 东北大学, 2016. |
LI Liangxing. Production of carbon and oxygen from CO2 by electrolysis in halide-lithium carbonate molten salts[D]. Shenyang: Northeastern University, 2016. | |
40 | 吕旺燕, 刘世念, 苏伟, 等. 熔盐电沉积碳材料的研究进展[J]. 材料导报, 2012, 26(S2): 248-251. |
Wangyan LYU, LIU Shinian, SU Wei, et al. Research progresses in the electro-deposition of carbonaceous materials in molten salts[J]. Materials Review, 2012, 26(S2): 248-251. | |
41 | LI Zelong, WANG Jijie, QU Yuanzhi, et al. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catalysis, 2017, 7(12): 8544-8548. |
42 | ZURAIQI Karma, ZAVABETI Ali, Jonathan CLARKE-HANNAFORD, et al. Direct conversion of CO2 to solid carbon by Ga-based liquid metals[J]. Energy & Environmental Science, 2022, 15(2): 595-600. |
43 | NGUYEN Dang Le Tri, KIM Younghye, HWANG Yun Jeong, et al. Progress in development of electrocatalyst for CO2 conversion to selective CO production[J]. Carbon Energy, 2020, 2(1): 72-98. |
44 | PETERSON Andrew A, Frank ABILD-PEDERSEN, STUDT Felix, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels[J]. Energy & Environmental Science, 2010, 3(9): 1311-1315. |
45 | HANSEN Heine A, VARLEY Joel B, PETERSON Andrew A, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO[J]. The Journal of Physical Chemistry Letters, 2013, 4(3): 388-392. |
46 | FEASTER Jeremy T, SHI Chuan, CAVE Etosha R, et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes[J]. ACS Catalysis, 2017, 7(7): 4822-4827. |
47 | HORI Yoshio, KIKUCHI Katsuhei, SUZUKI Shin. Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution[J]. Chemistry Letters, 1985, 14(11): 1695-1698. |
48 | HORI Yoshio, WAKEBE Hidetoshi, TSUKAMOTO Toshio, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media[J]. Electrochimica Acta, 1994, 39(11/12): 1833-1839. |
49 | HAUCH A, KÜNGAS R, BLENNOW P, et al. Recent advances in solid oxide cell technology for electrolysis[J]. Science, 2020, 370(6513): eaba6118. |
50 | DEKA Dhruba J, GUNDUZ Seval, FITZGERALD Taylor, et al. Production of syngas with controllable H2/CO ratio by high temperature co-electrolysis of CO2 and H2O over Ni and Co-doped lanthanum strontium ferrite perovskite cathodes[J]. Applied Catalysis B: Environmental, 2019, 248: 487-503. |
51 | QI Huiying, ZHANG Junfeng, TU Baofeng, et al. Extreme management strategy and thermodynamic analysis of high temperature H2O/CO2 co-electrolysis for energy conversion[J]. Renewable Energy, 2022, 183: 229-241. |
52 | JEON Hyo Sang, TIMOSHENKO Janis, RETTENMAIER Clara, et al. Selectivity control of Cu nanocrystals in a gas-fed flow cell through CO2 pulsed electroreduction[J]. Journal of the American Chemical Society, 2021, 143(19): 7578-7587. |
53 | LABINGER Jay A. Comment on “Selective anaerobic oxidation of methane enables direct synthesis of methanol”[J]. Science, 2018, 359(6377): eaar4968. |
54 | ZHOU Xianlong, SHAN Jieqiong, CHEN Ling, et al. Stabilizing Cu2+ ions by solid solutions to promote CO2 electroreduction to methane[J]. Journal of the American Chemical Society, 2022, 144(5): 2079-2084. |
55 | 张安. 二维过渡金属纳米片的表面调控用于高效二氧化碳电还原反应[D]. 合肥: 中国科学技术大学, 2021. |
ZHANG An. Surface engineering of two-dimensional transition metal nanosheets for efficient CO2 electroreduction[D]. Hefei: University of Science and Technology of China, 2021. | |
56 | BASTAKOTI Bishnu Prasad, LI Yunqi, IMURA Masataka, et al. Polymeric micelle assembly with inorganic nanosheets for construction of mesoporous architectures with crystallized walls[J]. Angewandte Chemie International Edition, 2015, 54(14): 4222-4225. |
57 | DOUSTKHAH Esmail, LIN Jianjian, ROSTAMNIA Sadegh, et al. Development of sulfonic-acid-functionalized mesoporous materials: Synthesis and catalytic applications[J]. Chemistry, 2019, 25(7): 1614-1635. |
58 | GENG Fengxia, MA Renzhi, Ebina Yasuo, et al. Gigantic swelling of inorganic layered materials: A bridge to molecularly thin two-dimensional nanosheets[J]. Journal of the American Chemical Society, 2014, 136(14): 5491-5500. |
59 | KONNERTH Hannelore, MATSAGAR Babasaheb M, CHEN Season S, et al. Metal-organic framework (MOF)-derived catalysts for fine chemical production[J]. Coordination Chemistry Reviews, 2020, 416: 213319. |
60 | LIAO Yute, NGUYEN Van Chi, ISHIGURO Nozomu, et al. Engineering a homogeneous alloy-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. Applied Catalysis B: Environmental, 2020, 270: 118805. |
61 | LIAO Yu-Te, MATSAGAR Babasaheb M, WU K. Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass[J]. ACS Sustain Chem. Eng., 2018, 6(11): 13628-13643. |
62 | HE Hanbing, LI Ren, YANG Zhihui, et al. Preparation of MOFs and MOFs derived materials and their catalytic application in air pollution: A review[J]. Catalysis Today, 2021, 375: 10-29. |
63 | DONG Jinqiao, HAN Xing, LIU Yan, et al. Metal-covalent organic frameworks (MCOFs): A bridge between metal-organic frameworks and covalent organic frameworks[J]. Angewandte Chemie International Edition, 2020, 59(33): 13722-13733. |
64 | YANG Kun, SUN Qian, XUE Feng, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape[J]. Journal of Hazardous Materials, 2011, 195: 124-131. |
65 | CHEN Dongyao, ZHAO Songjian, QU Zan, et al. Cu-BTC as a novel material for elemental mercury removal from sintering gas[J]. Fuel, 2018, 217: 297-305. |
66 | ZHAO Songjian, MEI Jian, XU Haomiao, et al. Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr)[J]. Journal of Hazardous Materials, 2018, 351: 301-307. |
67 | 何超华. 面向电化学CO2还原铜基催化剂的设计及其反应机理研究[D]. 合肥: 中国科学技术大学, 2021. |
HE Chaohua. Rational design and mechanism investigation of copper based CO2 electroreduction catalysts[D]. Hefei: University of Science and Technology of China, 2021. | |
68 | SHENG Jianping, HE Ye, HUANG Ming, et al. Frustrated lewis pair sites boosting CO2 photoreduction on Cs2CuBr4 perovskite quantum dots[J]. ACS Catalysis, 2022, 12(5): 2915-2926. |
69 | BANERJEE Tanmay, HAASE Frederik, TRENKER Stefan, et al. Sub-stoichiometric 2D covalent organic frameworks from tri- and tetratopic linkers[J]. Nature Communications, 2019, 10: 2689. |
70 | XIONG Yifeng, LIAO Qiaobo, HUANG Zhengping, et al. Ultrahigh responsivity photodetectors of 2D covalent organic frameworks integrated on graphene[J]. Advanced Materials, 2020, 32(9): e1907242. |
71 | LIAO Qiaobo, XU Wentao, HUANG Xin, et al. Donor-acceptor type[4+3]covalent organic frameworks: Sub-stoichiometric synthesis and photocatalytic application[J]. Science China Chemistry, 2020, 63(5): 707-714. |
72 | XU Wentao, PEI Xiaokun, DIERCKS Christian S, et al. A metal-organic framework of organic vertices and polyoxometalate linkers as a solid-state electrolyte[J]. Journal of the American Chemical Society, 2019, 141(44): 17522-17526. |
73 | SONG Yufei, MCMILLAN Nicola, LONG Deliang, et al. Micropatterned surfaces with covalently grafted unsymmetrical polyoxometalate-hybrid clusters lead to selective cell adhesion[J]. Journal of the American Chemical Society, 2009, 131(4): 1340-1341. |
74 | LU Meng, ZHANG Mi, LIU Jiang, et al. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction[J]. Journal of the American Chemical Society, 2022, 144(4): 1861-1871. |
75 | CHANG Xiaoxia, WANG Tuo, ZHAO Zhijian, et al. Tuning Cu/Cu2O interfaces for the reduction of carbon dioxide to methanol in aqueous solutions[J]. Angewandte Chemie International Edition, 2018, 57(47): 15415-15419. |
76 | REZAUL KARIM Kaykobad Md, Huei Ruey ONG, ABDULLAH Hamidah, et al. Photoelectrochemical reduction of carbon dioxide to methanol on p-type CuFe2O4 under visible light irradiation[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18185-18193. |
77 | ZHAO Jiwu, XUE Lan, NIU Zhenjie, et al. Conversion of CO2 to formic acid by integrated all-solar-driven artificial photosynthetic system[J]. Journal of Power Sources, 2021, 512: 230532. |
78 | ZHAO Tingting, FENG Guanghui, CHEN Wei, et al. Artificial bioconversion of carbon dioxide[J]. Chinese Journal of Catalysis, 2019, 40(10): 1421-1437. |
79 | FANG Xin, SOKOL Katarzyna P, Heidary Nina, et al. Structure-activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis[J]. Nano Letters, 2019, 19(3): 1844-1850. |
80 | ROSSER Timothy E, GROSS Manuela A, LAI Yi-Hsuan, et al. Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts[J]. Chemical Science, 2016, 7(7): 4024-4035. |
81 | COBB Samuel J, BADIANI Vivek M, DHARANI Azim M, et al. Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis[J]. Nature Chemistry, 2022, 14(4): 417-424. |
82 | NAJAFPOUR Mohammad Mahdi, MADADKHANI Sepideh, ZAND Zahra, et al. Engineered polypeptide around nano-sized manganese-calcium oxide as an artificial water-oxidizing enzyme mimicking natural photosynthesis: Toward artificial enzymes with highly active site densities[J]. International Journal of Hydrogen Energy, 2016, 41(40): 17826-17836. |
83 | LIU Yang, CHEN Yong, GAO Zirui, et al. Embedding high loading and uniform Ni nanoparticles into silicalite-1 zeolite for dry reforming of methane[J]. Applied Catalysis B: Environmental, 2022, 307: 121202. |
84 | KIM Soong, Byeong CHA, SAQLAIN Shahid, et al. Atomic layer deposition for preparation of highly efficient catalysts for dry reforming of methane[J]. Catalysts, 2019, 9(3): 266. |
85 | KIM Yikyeom, Hyun Suk LIM, LEE Minbeom, et al. Ni-Fe-Al mixed oxide for combined dry reforming and decomposition of methane with CO2 utilization[J]. Catalysis Today, 2021, 368: 86-95. |
86 | NIU Juntian, GUO Fan, RAN Jingyu, et al. Methane dry (CO2) reforming to syngas (H2/CO) in catalytic process: From experimental study and DFT calculations[J]. International Journal of Hydrogen Energy, 2020, 45(55): 30267-30287. |
87 | WU Zhongshuai, YANG Shubin, SUN Yi, et al. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012, 134(22): 9082-9085. |
88 | 仝塞. 石墨烯负载镍基催化剂设计及其催化二氧化碳甲烷化的研究[D]. 南昌: 南昌大学, 2018. |
TONG Sai. Design of graphene-supported nickel-based catalysts and their catalytic performance for the CO2 methanation reaction[D]. Nanchang: Nanchang University, 2018. | |
89 | SUN Haiyan, XU Zhen, GAO Chao. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560. |
90 | BURRESS Jacob W, GADIPELLI Srinivas, FORD Jamie, et al. Graphene oxide framework materials: Theoretical predictions and experimental results[J]. Angewandte Chemie International Edition, 2010, 49(47): 8902-8904. |
91 | ZHU Chengzhou, DONG Shaojun. Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction[J]. Nanoscale, 2013, 5(5): 1753-1767. |
92 | XU J M, CHENG J P. The advances of Co3O4 as gas sensing materials: A review[J]. Journal of Alloys and Compounds, 2016, 686: 753-768. |
93 | CHEN L L, ZHANG Z Y, QI N, et al. Giant reduction in thermal conductivity of Co3O4 with ordered mesopore structures[J]. Microporous and Mesoporous Materials, 2020, 296: 109969. |
94 | CHUNG S, REVIA R A, ZHANG M. Graphene quantum dots and their applications in bioimaging, biosensing, and therapy[J]. Advanced Materials, 2021, 33(22): e1904362. |
95 | ZHI Dandan, LI Tian, LI Jinzhe, et al. A review of three-dimensional graphene-based aerogels: Synthesis, structure and application for microwave absorption[J]. Composites Part B: Engineering, 2021, 211: 108642. |
96 | LI Saisai, SUN Jianrui, GUAN Jingqi. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2021, 42(4): 511-556. |
97 | TIAN Yuheng, YU Zhichun, CAO Liuyue, et al. Graphene oxide: An emerging electromaterial for energy storage and conversion[J]. Journal of Energy Chemistry, 2021, 55: 323-344. |
98 | CHAKRABARTI Amartya, LU Jun, SKRABUTENAS Jennifer C, et al. Conversion of carbon dioxide to few-layer graphene[J]. Journal of Materials Chemistry, 2011, 21(26): 9491-9493. |
99 | GONG Peng, TANG Can, WANG Boran, et al. Precise CO2 reduction for bilayer graphene[J]. ACS Central Science, 2022, 8(3): 394-401. |
100 | DONG H Y, GUO S Q, ZHAO L F. Facile preparation of multilayered graphene with CO2 as a carbon source[J]. Applied Sciences, 2019, 9(21): 4482. |
101 | 夏力. 金属配合物对二氧化碳转化为聚碳酸酯的催化作用研究[D]. 西安: 西安石油大学, 2019. |
XIA Li. Catalytic effect of metal complexes on carbon dioxide conversion to polycarbonate[D]. Xi’an: Xi’an Shiyou University, 2019. | |
102 | 樊维. 过渡金属配合物对二氧化碳转化为聚碳酸酯的催化作用研究[D]. 西安: 西安石油大学, 2019. |
FAN Wei. Study on the catalytic effect of transition metal complexes on the conversion of carbon dioxide to polycarbonate[D]. Xi’an: Xi’an Shiyou University, 2019. | |
103 | 韩微莉. 过渡金属配合物催化二氧化碳与环氧化物共聚研究[D]. 西安: 西安石油大学, 2018. |
HAN Weili. Study on the copolymerization of carbon dioxide and epoxide catalyzed by transition metal complexes[D]. Xi’an: Xi’an Shiyou University, 2018. | |
104 | 李想. 二氧化碳与环氧化物聚合[D]. 长春: 东北师范大学, 2015. |
LI Xiang. Copolymerizations of carbon dioxide and epoxides[D]. Changchun: Northeast Normal University, 2015. | |
105 | PADDOCK Robert L, HIYAMA Yaeko, MCKAY Jonathan M, et al. Co(III) porphyrin/DMAP: An efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides[J]. Tetrahedron Letters, 2004, 45(9): 2023-2026. |
106 | HUANG Jie, XU Yunpeng, WANG Meige, et al. Copolymerization of propylene oxide and CO2 catalyzed by dinuclear salcy-CoCl complex[J]. Journal of Macromolecular Science, Part A, 2020, 57(2): 131-138. |
107 | 易敏. 烯烃与二氧化碳直接合成环碳酸酯研究[D]. 杭州: 浙江大学, 2020. |
YI Min. Study on the direct synthesis of cyclic carbonates from olefins and CO2 [D]. Hangzhou: Zhejiang University, 2020. | |
108 | 杨欢, 高国淑, 陈万民, 等. 不对称3d-4f金属螺旋配合物用于催化CO2环加成反应[C]//中国稀土学会2020学术年会暨江西(赣州)稀土资源绿色开发与高效利用大会摘要集. 赣州, 2020: 302. |
YANG Huan, GAO Guoshu, CHEN Wanmin, et al. Asymmetric 3d-4f metal spiral complexes catalyzed CO2 cycloaddition reaction[C]// China Rare Earth Society 2020 Annual Conference and Jiangxi (Ganzhou) Rare Earth Resources Green Development and Efficient Utilization conference. 2020. |
[1] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[4] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[5] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[6] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[7] | SONG Weitao, SONG Huiping, FAN Zhenlian, FAN Biao, XUE Fangbin. Research progress of fly ash in anti-corrosion coatings [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4894-4904. |
[8] | LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966. |
[9] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[10] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[11] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[12] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[13] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[14] | OUYANG Sufang, ZHOU Daowei, HUANG Wei, JIA Feng. Research progress on novel anti-migration rubber antioxidants [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3708-3719. |
[15] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |