Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (09): 3568-3576.DOI: 10.16085/j.issn.1000-6613.2017-2139
Previous Articles Next Articles
LIU Dongguo, WU Yunqing, DUAN Xuehui
Received:
2017-10-19
Revised:
2017-11-27
Online:
2018-09-05
Published:
2018-09-05
刘东国, 吴云青, 段学辉
通讯作者:
段学辉,教授,硕士生导师,研究方向为绿色化工技术。
作者简介:
刘东国(1993-),男,硕士研究生,研究方向为新能源技术。E-mail:LDG196703@163.com。
CLC Number:
LIU Dongguo, WU Yunqing, DUAN Xuehui. Development and application of fungi in cellulosic ethanol prodution via consolidated bioprocessing[J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3568-3576.
刘东国, 吴云青, 段学辉. 联合生物加工产纤维素乙醇中真菌的开发与应用[J]. 化工进展, 2018, 37(09): 3568-3576.
[1] TOMOHISA H, FUMIYOSHI O, NAOKO O, et al. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology[J]. Bioresource Technology, 2013, 135(39):513-522. [2] MOSIER N, WYMAN C, DALE B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005, 96(6):673. [3] 李江, 谢天文, 刘晓风. 木质纤维素生产燃料乙醇的糖化发酵工艺研究进展[J]. 化工进展, 2011, 30(2):284-291. LI Jiang, XIE Tianwen, LIU Xiaofeng. Technologies of saccharification and fermentation for fuel ethanol from lignocellulosic materials[J]. Chemical Industry and Engineering Progress, 2011, 30(2):284-291. [4] VAN ZYL W H, LYND L R, DEN HAAN R, et al. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae[M]//Biofuels. Berlin Heidelberg:Springer, 2007:205-235. [5] GUO L, ZHANG J, HU F, et al. Consolidated bioprocessing of highly concentrated Jerusalem artichoke tubers for simultaneous saccharification and ethanol fermentation[J]. Biotechnology and Bioengineering, 2013, 110(10):2606-2615. [6] RAFTERY J P, KARIM M N. Economic viability of consolidated bioprocessing utilizing multiple biomass substrates for commercial-scale cellulosic bioethanol production[J]. Biomass and Bioenergy, 2017, 103:35-46. [7] BROWN T R, BROWN R C, ESTES V. Commercial-scale production of lignocellulosic biofuels[J]. Chemical Engineering Progress, 2015, 111(3):62-64. [8] 胡徐腾. 纤维素乙醇研究开发进展[J]. 化工进展, 2011, 30(1):137-143. HU Xuteng. Progress of cellulose ethanol research & development[J]. Chemical Industry and Engineering Progress, 2011, 30(1):137-143. [9] 李心利, 朱玉红, 汪保卫, 等. 一体化生物加工过程生产乙醇的研究进展[J]. 化工进展, 2016, 35(11):3600-3610. LI Xinli, ZHU Yuhong, WANG Baowei, et al. Progress in bioethanol production via consolidated bioprocessing[J]. Chemical Industry and Engineering Progress, 2016, 35(11):3600-3610. [10] VAN ZYL W H, DEN HAAN R, LA GRANGE D C. Developing cellulolytic organisms for consolidated bioprocessing of lignocellulosics[M]//Biofuel Technologies. Berlin Heidelberg:Springer, 2013:189-220. [11] XU Q, SINGH A, HIMMEL M E. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose[J]. Current Opinion in Biotechnology, 2009, 20(3):364-371. [12] AMORE A, FARACO V. Potential of fungi as category Ⅰ Consolidated BioProcessing organisms for cellulosic ethanol production[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5):3286-3301. [13] HOSSAIN S K M. Bioethanol fermentation from non-treated and pretreated corn stover using Aspergillus oryzae[J]. Chemical Engineering Research Bulletin, 2013, 16(1):33-44. [14] ALI S S, NUGENT B, MULLINS E, et al. Fungal-mediated consolidated bioprocessing:the potential of Fusarium oxysporum for the lignocellulosic ethanol industry[J]. AMB Express, 2016, 6(1):1-13. [15] XU J, WANG X, HU L, et al. A novel ionic liquid-tolerant Fusarium oxysporum BN secreting ionic liquid-stable cellulase:consolidated bioprocessing of pretreated lignocellulose containing residual ionic liquid[J]. Bioresource Technology, 2015, 181:18-25. [16] DE ALMEIDA M N, GUIMARAES V M, FALKOSKI D L, et al. Direct ethanol production from glucose, xylose and sugarcane bagasse by the corn endophytic fungi Fusarium verticillioides and Acremonium zeae[J]. Journal of Biotechnology, 2013, 168(1):71-77. [17] ZHANG B, YANG S T. Metabolic engineering of Rhizopus oryzae:effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose[J]. Process Biochemistry, 2012, 47(12):2159-2165. [18] BÜYÜKKILECI A O, HAMAMCI H, YUCEL M. Lactate and ethanol productions by Rhizopus oryzae ATCC 9363 and activities of related pyruvate branch point enzymes[J]. Journal of Bioscience and Bioengineering, 2006, 102(5):464-466. [19] INOKUMA K, TAKANO M, HOSHINO K. Direct ethanol production from N-acetylglucosamine and chitin substrates by Mucor species[J]. Biochemical Engineering Journal, 2013, 72:24-32. [20] KHALEGHIAN H, KARIMI K, BEHZAD T. Ethanol production from rice straw by sodium carbonate pretreatment and Mucor hiemalis fermentation[J]. Industrial Crops and Products, 2015, 76:1079-1085. [21] DOGARIS I, MAMMA D, KEKOS D. Biotechnological production of ethanol from renewable resources by Neurospora crassa:an alternative to conventional yeast fermentations?[J]. Applied Microbiology & Biotechnology, 2013, 97(4):1457-1473. [22] WATERS J C, NIXON A, DWYER M, et al. Developing elite Neurospora crassa, strains for cellulosic ethanol production using fungal breeding[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(8):1137-1144. [23] ZERVA A, SAVVIDES A L, KATSIFAS E A, et al. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing[J]. Bioresource Technology, 2014, 162:294-299. [24] HASUNUMA T, KONDO A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering[J]. Biotechnology Advances, 2012, 30(6):1207-1218. [25] CHAROENSOPHARAT K, THANONKEO P, THANONKEO S, et al. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus, using consolidated bioprocessing[J]. Antonie Van Leeuwenhoek, 2015, 108(1):173-190. [26] JEFFRIES T W, NELSON S S, MAHAN S D, et al. Pichia stipitis engineered for improved fermentation of cellulosic and hemicellulosic sugars[C]//The 32nd Symposium on Biotechnology for Fuels and Chemicals. 2010. [27] JEFFRIES T W, GRIGORIEV I V, GRIMWOOD J, et al. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis[J]. Nature Biotechnology, 2007, 25(3):319-326. [28] RYABOVA O B, CHMIL O M, SIBIRNY A A. Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha[J]. FEMS Yeast Research, 2003, 4(2):157-164. [29] LIU Z L, WEBER S A, COTTA M A. Isolation and characterization of a β-glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials[J]. BioEnergy Research, 2013, 6(1):65-74. [30] TSUJI M, GOSHIMA T, MATSUSHIKA A, et al. Direct ethanol fermentation from lignocellulosic biomass by Antarctic basidiomycetous yeast Mrakia blollopis under a low temperature condition[J]. Cryobiology, 2013, 67(2):241-243. [31] ZHANG G C, LIU J J, KONG I I, et al. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion[J]. Current Opinion in Chemical Biology, 2015, 29:49-57. [32] SAHA B C, QURESHI N, KENNEDY G J, et al. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis[J]. International Biodeterioration & Biodegradation, 2016, 109:29-35. [33] MATTILA H, KUUSKERI J, LUNDELL T. Single-step, single-organism bioethanol production and bioconversion of lignocellulose waste materials by phlebioid fungal species[J]. Bioresource Technology, 2017, 225:254-261. [34] HORISAWA S, ANDO H, ARIGA O, et al. Direct ethanol production from cellulosic materials by consolidated biological processing using the wood rot fungus Schizophyllum commune[J]. Bioresource Technology, 2015, 197:37-41. [35] OKAMOTO K, UCHⅡ A, KANAWAKU R, et al. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor[J]. Springerplus, 2014, 3(1):121. [36] MAEHARA T, ICHINOSE H, FURUKAWA T, et al. Ethanol production from high cellulose concentration by the basidiomycete fungus Flammulina velutipes[J]. Fungal Biology, 2013, 117(3):220-226. [37] OKAMOTO K, NITTA Y, MAEKAWA N, et al. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta[J]. Enzyme and Microbial Technology, 2011, 48(3):273-277. [38] OKAMOTO K, IMASHIRO K, AKIZAWA Y, et al. Production of ethanol by the white-rot basidiomycetes Peniophora cinerea and Trametes suaveolens[J]. Biotechnology Letters, 2010, 32(7):909-913. [39] BAK J S, KO J K, CHOI I G, et al. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw[J]. Biotechnology and Bioengineering, 2009, 104(3):471-482. [40] HUANG J, CHEN D, WEI Y, et al. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48[J]. The Scientific World Journal, 2014, 3:798683. [41] WANG J, HIRABAYASHI S, MORI T, et al. Improvement of ethanol production by recombinant expression of pyruvate decarboxylase in the white-rot fungus Phanerochaete sordida YK-624[J]. Journal of Bioscience and Bioengineering, 2016, 122(1):17-21. [42] MAEHARA T, TAKABATAKE K, KANEKO S. Expression of Arabidopsis thaliana xylose isomerase gene and its effect on ethanol production in Flammulina velutipes[J]. Fungal Biology, 2013, 117(11):776-782. [43] ANASONTZIS G E, KOURTOGLOU E, VILLASBOAS S G, et al. Metabolic engineering of Fusarium oxysporum to improve its ethanol-producing capability[J]. Frontiers in Bicrobiology, 2016, 7:632. [44] ANASONTZIS G E, ZERVA A, STATHOPOULOU P M, et al. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics[J]. Journal of Biotechnology, 2011, 152(1):16-23. [45] ZHANG J, ZHANG B, WANG D, et al. Rapid ethanol production at elevated temperatures by engineered thermotolerant Kluyveromyces marxianus via the NADP (H)-preferring xylose reductase-xylitol dehydrogenase pathway[J]. Metabolic Engineering, 2015, 31:140-152. [46] JO S E, SEONG Y J, LEE H S, et al. Microaerobic conversion of xylose to ethanol in recombinant Saccharomyces cerevisiae SX6 MUT expressing cofactor-balanced xylose metabolic enzymes and deficient in ALD6[J]. Journal of Biotechnology, 2016, 227:72-78. [47] TREEBUPACHATSAKUL T, NAKAZAWA H, SHINBO H, et al. Heterologously expressed Aspergillus aculeatus β-glucosidase in Saccharomyces cerevisiae is a cost-effective alternative to commercial supplementation of β-glucosidase in industrial ethanol production using Trichoderma reesei cellulases[J]. Journal of Bioscience and Bioengineering, 2016, 121(1):27-35. [48] AMOAH J, ISHIZUE N, ISHIZAKI M, et al. Development and evaluation of consolidated bioprocessing yeast for ethanol production from ionic liquid-pretreated bagasse[J]. Bioresource Technology B, 2017, 245:1413-1420. [49] TURANLI-YILDIZ B, BENBADIS L, ALKIM C, et al. In vivo evolutionary engineering for ethanol-tolerance of Saccharomyces cerevisiae haploid cells triggers diploidization[J]. Journal of Bioscience and Bioengineering, 2017, 124(3):309-318. [50] KHATUN M M, YU X, KONDO A, et al. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein[J]. Bioresource Technology B, 2017, 245:1447-1454. [51] KHATUN M M, LIU C G, ZHAO X Q, et al. Consolidated ethanol production from Jerusalem artichoke tubers at elevated temperature by Saccharomyces cerevisiae engineered with inulinase expression through cell surface display[J]. Journal of Industrial Microbiology & Biotechnology, 2017, 44(2):295-301. [52] PUSEENAM A, TANAPONGPIPAT S, ROONGSAWANG N. Co-expression of endoxylanase and endoglucanase in Scheffersomyces stipitis and its application in ethanol production[J]. Applied Biochemistry and Biotechnology, 2015, 177(8):1690-1700. [53] JIANG L L, ZHOU J J, QUAN C S, et al. Advances in industrial microbiome based on microbial consortium for biorefinery[J]. Bioresources & Bioprocessing, 2017, 4(1):11. [54] THOMSEN M. Complex media from processing of agricultural crops for microbial fermentation[J]. Applied Microbiology and Biotechnology, 2005, 68(5), 598-606. [55] HO C Y, CHANG J J, LEE S C, et al. Development of cellulosic ethanol production process via co-culturing of artificial cellulosomal Bacillus and kefir yeast[J]. Applied Energy, 2012, 100:27-32. [56] ZUROFF T R, XIQUES S B, Curtis W R. Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture[J]. Biotechnology for Biofuels, 2013, 6(1):59. [57] BRETHAUER S, STUDER M H. Consolidated bioprocessing of lignocellulose by a microbial consortium[J]. Energy & Environmental Science, 2014, 7(4):1446-1453. [58] WILKINSON S, SMART K A, JAMES S, et al. Bioethanol production from brewers spent grains using a fungal consolidated bioprocessing (CBP) approach[J]. BioEnergy Research, 2017, 10(1):146-157. |
[1] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[2] | YANG Han, ZHANG Yibo, LI Qi, ZHANG Jun, TAO Ying, YANG Quanhong. Practical carbon anodes for sodium-ion batteries: progress and challenge [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4029-4042. |
[3] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[4] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[5] | WANG Chuandong, ZHANG Junqi, LIU Dingyuan, MA Yuanyuan, LI Feng, SONG Hao. Co-utilization of xylose and glucose to produce chemicals by microorganisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 354-372. |
[6] | LI Wanqi, YANG Fengjuan, JIA Dechen, JIANG Weihong, GU Yang. Biological utilization and conversion of syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. |
[7] | WU Hanzhu, SI Zhihao, QIN Peiyong. Current progress of in situ bioethanol separation technology [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1318-1329. |
[8] | WANG Zhi, YUAN Ye, SHENG Menglong, LI Qinghua. Membrane technology for carbon capture—Research status and prospects [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1097-1101. |
[9] | TANG Wenxiu, WANG Xueming, GUO Liang, JI Lihao, GAO Cong, CHEN Xiulai, LIU Liming. Metabolic engineering of Escherichia coli to produce succinic acid [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 938-950. |
[10] | QI Zhenhua, ZHOU Rong, BAI Yanan, LI Yuqin, TANG Yufang. Fermentation wastewater treatment and high-quality protein production by Chlorella pyrenoidosa under fed-batch mode [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6733-6743. |
[11] | ZHANG Qiang, CHEN Shiyang. Effect of oxygen-assisted hydrothermal pretreatment on fermentation of corn stover to ethanol [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 161-165. |
[12] | GAO Hao, LU Jiasheng, ZHANG Wenming, DONG Weiliang, FANG Yan, YU Ziyi, XIN Fengxue, JIANG Min. Application of material-mediated cell immobilization technology in biological fermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3923-3931. |
[13] | LI Ling, YU Yong, HU Yonghong. Research progress in production of lipstatinfermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2251-2257. |
[14] | CAI Di, LI Shufeng, SI Zhihao, QIN Peiyong, TAN Tianwei. Current advances and development of bio-butanol separation techniques [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1161-1177. |
[15] | LI Yang, ZHU Chenhui, FAN Daidi. Green biological manufacture and application of recombinant collagen [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1262-1275. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 357
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 309
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |