[1] 李亚峰, 高颖. 超声波/Fenton处理含酚废水的影响因素[J]. 环境工程学报, 2015, 9(3):1233-1237. LI Yafeng, GAO Ying. Influencing factors of ultrasound/Fenton process for phenol wastewater[J]. Chinese Journal of Environmental Engineering, 2015, 9(3):1233-1237.
[2] 刘引娣, 刘有智, 高璟, 等. 超重力-电催化耦合法降解含酚废水[J]. 化工进展, 2015, 34(7):2070-2074. LIU Yindi, LIU Youzhi, GAO Jing, et al. Degradation of phenol in wastewater using high gravity coupled with electro-catalytic method[J]. Chemical Industry and Engineering Progress, 2015, 34(7):2070-2074.
[3] MUTHUKUMAR N P, MURUGAN S. Production, purification and application of bacterial laccase:a review[J]. Biotechnology, 2014, 13(5):196-205.
[4] FERNANDEZFERNANDEZ M, SANROMAN M A, Moldes D. Recent developments and applications of immobilized laccase[J]. Biotechnology Advances, 2013, 31(8):1808-1825.
[5] DAI Y, YAO J, SONG Y, et al. Enhanced adsorption and degradation of phenolic pollutants in water by carbon nanotube modified laccase-carrying electrospun fibrous membranes[J]. Environmental Science Nano, 2016, 3(4):857-868.
[6] HU J, YUAN B, ZHANG Y, et al. Immobilization of laccase on magnetic silica nanoparticles and its application in the oxidation of guaiacol, a phenolic lignin model compound[J]. RSC Advances, 2015, 5(120):99439-99447.
[7] TAVARES A P, SILVA C G, DRAZIC G, et al. Laccase immobilization over multi-walled carbon nanotubes:kinetic, thermodynamic and stability studies[J]. Journal of Colloid & Interface Science, 2015, 454:52-60.
[8] Xavier A, Tavares A, Daniel-Da-Silva A, et al. Optimisation of laccase immobilization on modified magnetic nanoparticles for biocatalytic reactions[J]. New Biotechnology, 2016, 33:S15.
[9] MUKHOPADHYAY A, DASGUPTA A K, Chakrabarti K. Enhanced functionality and stabilization of a cold active laccase using nanotechnology based activation-immobilization.[J]. Bioresource Technology, 2015, 179(179C):573-584.
[10] 刘晓贞, 李云, 梁云霄, 等. 二氧化硅/壳聚糖大孔复合材料固定化漆酶及其对2,4-二氯苯酚的降解[J]. 高校化学工程学报, 2016, 30(1):201-209. LIU Xiaozhen, LI Yun, LIANG Yunxiao, et al. Laccase immobilization with silica/chitosan macroporous composites and its application in 2,4-dichlorophenol degradation[J].Journal of Chemical Engineering of Chinese Universities, 2016, 30(1):201-209.
[11] 张笛, 邓满凤, 赵赫, 等. 多巴胺包埋磁性SiO2固定化漆酶催化去除4-氯酚[J]. 化工学报, 2015, 66(9):3705-3711. ZHANG Di, DENG Manfeng, ZHAO He, et al. Immobilization of laccase on magnetic SiO2 through dopamine self-polymerization for 4-CP removal[J]. CIESC Journal, 2015, 66(9):3705-3711.
[12] 代云容, 袁钰, 于彩虹, 等. 静电纺丝纤维膜固定化漆酶对水中双酚A的降解性能[J]. 环境科学学报, 2015, 35(7):2107-2113. DAI Yunrong, YUAN Yu, YU Caihong, et al. Degradation of bisphenol A in water by laccase immobilized in electrospun fibrous membranes[J]. Acta Scientiae Circumstantiae, 2015, 35(7):2107-2113.
[13] FERNANDES R A, DANIEL-DA-SILVA A L, TAVARES A P M, et al. EDTA-Cu(Ⅱ) chelating magnetic nanoparticles as a support for laccase immobilization[J]. Chemical Engineering Science, 2017, 158:599-605.
[14] PATEL S K, KALIA V C, CHOI J H, et al. Immobilization of laccase on SiO2nanocarriers improves its stability and reusability.[J]. Journal of Microbiology & Biotechnology, 2014, 24(5):639.
[15] DAI Y, YAO J, SONG Y, et al. Enhanced performance of immobilized laccase in electrospun fibrous membranes by carbon nanotubes modification and its application for bisphenol A removal from water[J]. Journal of Hazardous Materials, 2016, 317:485-493.
[16] BECKER D, VARELA D G S, RODRIGUEZ-MOZAZ S, et al. Removal of antibiotics in wastewater by enzymatic treatment with fungal laccase:degradation of compounds does not always eliminate toxicity[J]. Bioresource Technology, 2016, 219:500-509.
[17] 黄文光, 张淑娟, 孙洪飞. 尺寸可控的固定化漆酶-介体凝胶小球微反应器的制备和性能评价[J]. 化学学报, 2016, 6:518-522. HUANG Wenguang, SUN Hongfei, ZHANG Shujuan.Facile synthesis and evaluation of size-tunable immobilized laccase-mediator microreacto[J]. Acta Chimica Sinica, 2016, 6:518-522.
[18] 张群, 张育淇, 刘晓贞, 等. 大尺寸SiO2大孔材料固定化漆酶[J]. 无机化学学报, 2013, 29(10):2065-2070. ZHANG Qun, ZHANG Yuqi, LIU Xiaozhen, et al. Immobilization of laccase on large-sized SiO2 macroporous materials[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(10):2065-2070.
[19] WANG H, WEI Z, ZHAO J, et al. Rapid decolorization of phenolic azo dyes by immobilized laccase with Fe3O4/SiO2 nanoparticles as support[J]. Industrial & Engineering Chemistry Research, 2013, 52(12):4401-4407.
[20] GASCÓN V, MARQUEZ-ALVAREZ C, BLANCO R M. Efficient retention of laccase by non-covalent immobilization on amino-functionalized ordered mesoporous silica[J]. Applied Catalysis A:General, 2014, 482:116-126.
[21] 贺晶, 朱剑峰, 朱晓峰, 等. Fe2O3/累托石催化降解间苯二酚[J]. 环境工程学报, 2017, 11(5):2711-2717. HE Jing, ZHU Jianfeng, ZHU Xiaofeng, et al. Catalytic degradation of resorcinol by Fe2O3/rectorite[J].Chinese Journal of Environmental Engineering, 2017, 11(5):2711-2717.
[22] 范峰, 凌凤香, 王少军, 等. 一种ZSM-5沸石的改性处理方法:CN102464336A[P]. 2012-05-23. FAN F, ZHU J F, ZHU X F, et al. A modification of ZSM-5 zeolite processing method:CN102464336A[P]. 2012-05-23.
[23] 李松, 刘宇, 海丹丹, 等. Trametes sp. LS-10C漆酶对直接类偶氮染料的脱色作用[J]. 环境工程学报, 2016, 10(10):6071-6076. LI Song, LIU Yu, HAI Dandan, et al.Decolorization of direct azo dyes by laccase from Trametes sp. LS-10C[J].Chinese Journal of Environmental Engineering, 2016, 10(10):6071-6076.
[24] NGUYEN T A, FU C C, JUANG R S. Effective removal of sulfur dyes from water by biosorption and subsequent immobilized laccase degradation on crosslinked chitosan beads[J]. Chemical Engineering Journal, 2016, 304:313-324.
[25] NIU J, DAI Y, GUO H, et al. Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor[J]. Journal of Hazardous Materials, 2013, 248/249(6):254.
[26] TAKAHASHI H, LI B, SASAKI T, et al. Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent[J]. Microporous & Mesoporous Materials, 2001, 45(1):755-762.
[27] RODRIGUEZCOUTO S. Production of laccase and decolouration of the textile dye Remazol Brilliant Blue R in temporary immersion bioreactors[J]. Journal of Hazardous Materials, 2011, 194:297.
[28] SILVA A M D, TAVARES A P M, ROCHA C M R, et al. Immobilization of commercial laccase on spent grain[J]. Process Biochemistry, 2012, 47(7):1095-1112.
[29] WU F C, RULING T, RUEYSHIN J. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems[J]. Chemical Engineering Journal, 2009, 150(2):366-373.
[30] ZHANG J, XU Z, CHEN H, et al. Removal of 2,4-dichlorophenol by chitosan-immobilized laccase from Coriolus versicolor[J]. Biochemical Engineering Journal, 2009, 45(1):54-59.
[31] DURAN N, ROSA M A, D ANNIBALE A, et al. Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports:a review[J]. Enzyme & Microbial Technology, 2002, 31(7):907-931.
[32] VALCHEVA E, VELEVA S, VALCHEV I, et al. Kinetic model of xylanase action on kraft pulp[J]. Reaction Kinetics, Mechanisms and Catalysis, 2000, 71(2):231-238.
[33] TAUBER M M, GUEBITZ G M, REHOREK A. Degradation of azo dyes by laccase and ultrasound treatment[J]. Applied & Environmental Microbiology, 2005, 71(5):2600-2607.
[34] SUTAR R S, RATHOD V K. Ultrasound assisted laccase catalyzed degradation of Ciprofloxacin hydrochloride[J]. Journal of Industrial & Engineering Chemistry, 2015, 31:276-282. |