[1] HALIM M H A, NOR A A, AZMI S I, et al. Aerobic sludge granulation at high temperatures for domestic wastewater treatment[J]. Bioresource Technology, 2015, 185(5):445-449.
[2] LIU X W, SHENG G P, YU H Q, et al. Physicochemical characteristics of microbial granules[J]. Biotechnology Advances, 2009, 27(6):1061-1070.
[3] BASSIN J P, KLEEREBEZEM R, DEZOTTI M, et al. Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures[J]. Water Research, 2012, 46(12):3805.
[4] GAO D, LIU L, LIANG H, et al. Aerobic granular sludge:characterization, mechanism of granulation and application to wastewater treatment[J]. Critical Reviews in Biotechnology, 2011, 31(2):137-152.
[5] 盖丽红. 低负荷下污泥的颗粒化及重金属对颗粒污泥的影响[D]. 济南:山东大学,2009. GAI L H. Granulation of sludge with low-strength wastewater and the effect of heavy metals on granular sludge[D]. Jinan:Shandong University, 2009.
[6] HEIJNEN J J, LOOSDRECHT M C M V, MULDER R, et al. Development and scale-up of an aerobic biofilm air-lift suspension reactor[J]. Waterence & Technology, 1993, 27(5/6):253-261.
[7] SCHMIDT J E, AHRING B K. Granular sludge formation in upflow anaerobic sludge blanket(UASB) reactors[J]. Biotechnology & Bioengineering, 1996, 49(3):229-46.
[8] OSE R K. The role of calcium in oral streptococcal aggregation and the implications for biofilm formation and retention[J]. Biochimica Et Biophysica Acta, 2000, 1475(1):76-82.
[9] LI X, LIU Q, YANG Q, et al. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation[J]. Bioresource Technology, 2009, 100(1):64-67.
[10] JIANG H L, TAY J H, LIU Y, et al. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors[J]. Biotechnology Letters, 2003, 25(2):95-99.
[11] LIU Z, LIU Y J, ZHANG A N, et al. Study on the process of aerobic granule sludge rapid formation by using the poly aluminum chloride (PAC)[J]. Chemical Engineering Journal, 2014, 250(9):319-325.
[12] LIU Z, LIU Y J, KUSCHK P, et al. Poly aluminum chloride (PAC) enhanced formation of aerobic granules:coupling process between physicochemical-biochemical effects[J]. Chemical Engineering Journal, 2016, 284:1127-1135.
[13] YILMAZ G, BOZKURT U, MAGDEN K A. Effect of iron ions (Fe2+, Fe3+) on the formation and structure of aerobic granular sludge[J]. Biodegradation, 2017, 28(1):53-68.
[14] 樊红辉. 微氧颗粒污泥+硅藻土去除焦化废水中氨氮的研究[D]. 太原:太原理工大学, 2012. FAN H H. Remove ammonia nitrogen in the coking wastewater with anaerobic granular sludge + diatomite[D]. Taiyuan:Taiyuan University of Technology, 2012.
[15] ISANTA E, SUAREZ-OJEDA M E, VAL DEL RIO A, et al. Long term operation of a granular sequencing batch reactor at pilot scale treating a low-strength wastewater[J]. Chemical Engineering Journal, 2012, s 198/199(4):163-170.
[16] NI B J, XIE W M, LIU S G, et al. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater[J]. Water Research, 2008, 43(3):751-761.
[17] 李星, 刘永军, 刘喆, 等. 聚合氯化铝投加时期对好氧颗粒污泥形成的影响[J]. 安全与环境学报, 2016, 16(2):314-318. LI X, LIU Y J, LIU Z, et al. Impact of application time of polyaluminium chloride dosage on the formation of aerobic granular sludge[J]. Journal of Safety and Environment, 2016, 16(2):314-318.
[18] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. State Environmental Protection Administration. Methods for analysis and detection of water and wastewater[M]. 4th ed. Beijing:China Environmental Science Press, 2002.
[19] ZHANG Y X, YANG Q, JI M, et al. Characteristics of granular sludge cultivated by domestic sewage[J]. Environmental Science and Technology, 2011, 24(3):15-20.
[20] 龙焙, 濮文虹, 杨昌柱, 等. 不同生物选择段的SBR中好氧颗粒污泥的特性[J]. 中国给水排水,2015, 31(5):16-21. LONG B, PU W H, YANG C Z, et al. Characteristics of aerobic granular sludge in SBRs with different biological selectors[J]. China Water & Wastewater, 2015, 31(5):16-21.
[21] LI A J, ZHANG T, LI X Y. Fate of aerobic bacterial granules with fungal contamination under different organic loading conditions[J]. Chemosphere, 2010, 78(5):500.
[22] PAN S, HE Y, TAY S T L, et al. Effect of organic loading rate on aerobic granulation. Ⅰ:Reactor performance[J]. Journal of Environmental Engineering, 2004, 130:1094-1101.
[23] 王春, 李志华, 王晓昌. 负荷及盐度对好氧颗粒污泥EPS的影响[J]. 环境工程学报, 2009, 3(4):591-594. WANG C, LI Z H, WANG X C. Effects of organic loading rate and salinity on characteristics of extracellular polymeric substances (EPS) of aerobic granules[J]. Chinese Journal of Environmental Engineering, 2009, 3(4):591-594.
[24] LIU Y Q, LIU Y, TAY J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology &Biotechnology, 2004, 65(2):143-148.
[25] TAY J H, LIU Q S, LIU Y. The role of cellular polysaccharides in the formation and stability of aerobic granules[J]. Letters in Applied Microbiology, 2001, 33(3):222.
[26] 杨月乔, 刘永军, 王晓慧, 等. 强化造粒初期SBR沉淀时间对颗粒污泥形成的影响[J]. 中国给水排水, 2016(7):36-39. YANG Y Q, LIU Y J, WANG X H, et al. Effects of sedimentation time on growing process of granular sludge in initial stage of enhancing granulation in SBR[J]. China Water & Wastewater, 2016(7):36-39.
[27] LIU Y, LIU Z, WANG F, et al. Regulation of aerobic granular sludge reformulation after granular sludge broken:effect of poly aluminum chloride (PAC)[J]. Bioresource Technology, 2014, 158(4):201-208.
[28] ADAV S S, LEE D J, SHOWK Y, et al. Aerobic granular sludge:recent advances[J]. Biotechnology Advances, 2008, 26(5):411.
[29] MCSWAIN B S, IRVINE R L, HAUSNER M, et al. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge[J]. Applied & Environmental Microbiology, 2005, 71(2):1051-1057.
[30] YU G H, WU M J, LUO Y H, et al. Fluorescence excitation-emission spectroscopy with regional integration analysis for assessment of compost maturity[J]. Waste Manag, 2011, 31(8):1729-1736.
[31] 周玲玲, 张永吉, 孙丽华, 等. 铁盐和铝盐混凝对水中天然有机物的去除特性研究[J]. 环境科学, 2008, 29(5):1187-1191. ZHOU L L, ZHANG Y J, SUN L H, et al. Characteristic of natural organic matter removal by ferric and aluminium coagulation[J]. Environmental Science, 2008, 29(5):1187-1191.
[32] SWIETLIK J, DABROWSKA A, RACZYK-STANISLAWIAK U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone.[J]. Water Research, 2004, 38(3):547.
[33] ZHU L, QI H, LV M L, et al. Component analysis of extracellular polymeric substances(EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124(3):455.
[34] VALENCIA S, MARIN J M, RESTREPO G, et al. Application of excitation-emission fluorescence matrices and UV/vis absorption to monitoring the photocatalytic degradation of commercial humic acid[J]. Science of the Total Environment, 2013, 442(1):207-214. |