[1] 吕凤勇, 马虎根, 何红萍, 等. 微通道内非共沸混合制冷剂的流动沸腾特性[J]. 化工进展, 2012, 31(7):1449-1453. LÜ Fengyong, MA Hugen, HE Hongping, et al. Investigation on flow boiling heat transfer of non-azeotropic refrigerant mixture in microchannel[J]. Chemical Industry and Engineering Progress, 2012, 31(7):1449-1453.
[2] CALM J M. The next generation of refrigerants-Historical review, considerations, and outlook[J]. International Journal of Refrigeration, 2008, 31(7):1123-1133.
[3] YANG Z, PENG X F, YE P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6):1003-1016.
[4] WU H L, PENG X F, YE P, et al. Simulation of refrigerant flow boiling in serpentine tubes[J]. International Journal of Heat and Mass Transfer, 2007, 50(5/6):1186-1195.
[5] 罗小平, 张霖, 刘波. 微细通道纳米制冷剂流动沸腾阻力特性[J]. 化工进展, 2016, 35(12):3763-3770. LUO Xiaoping, ZHANG Lin, LIU Bo. A study on flow boiling resistance of nanorefrigerant in rectangular microchannels[J]. Chemical Industry and Engineering Progress, 2016, 35(12):3763-3770.
[6] LI M, DANG C, HIHARA E. Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube:Part I. Experimental investigation[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14):3437-3446.
[7] SU W, ZHAO L, DENG S. Recent advances in modeling the vapor-liquid equilibrium of mixed working fluids[J]. Fluid Phase Equilibria, 2017, 432:28-44.
[8] BAO J, ZHAO L. Experimental research on the influence of system parameters on the composition shift for zeotropic mixture (isobutane/pentane) in a system occurring phase change[J]. Energy Conversion and Management, 2016, 113:1-15.
[9] KNUDSEN M. The kinetic theory of gases:some modern aspects, methuen's monographs physical subjects[M]. London:Methuen and Co. Ltd., 1934.
[10] SCHRAGE R W. A theoretical study of interphase mass transfer[M]. New York:Columbia University Press, 1953.
[11] TANASAWA I. Advances in condensation heat transfer[M]//HARTNETT J P, IRVINE T F, CHO Y I. Advances in Heat Transfer. Amsterdam:Elsevier, 1991, 21:55-139.
[12] LEE W H. A pressure iteration scheme for two-phase flow modeling[J]. Multiphase Transport Fundamentals, Reactor Safety, Applications, 1980, 407:432.
[13] ISHⅡ M. Thermo-fluid dynamics theory of two-phase flow[M]. Nasa Sti/recon Technical Report A, 1975:75.
[14] GIBOU F, CHEN L, NGUYEN D, et al. A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change[J]. Journal of Computational Physics, 2007, 222(2):536-555.
[15] NICHITA B A, THOME J R. A level set method and a heat transfer model implemented into FLUENT for modeling of microscale two phase flows[EB/OL].[2017-10-10]. https://infoscience.epfl.ch/record/151629/Nato_Nichita_Thome.pdf.
[16] SUN D, XU J, WANG L. Development of a vapor-liquid phase change model for volume-of-fluid method in FLUENT[J]. International Communications in Heat and Mass Transfer, 2012, 39(8):1101-1106.
[17] SUN D, XU J, CHEN Q. Modeling of the evaporation and condensation phase-change problems with FLUENT[J]. Numerical Heat Transfer, Part B:Fundamentals, 2014, 66(4):326-342.
[18] HARDT S, WONDRA F. Evaporation model for interfacial flows based on a continuum-field representation of the source terms[J]. Journal of Computational Physics, 2008, 227(11):5871-5895.
[19] BANERJEE R. Turbulent conjugate heat and mass transfer from the surface of a binary mixture of ethanol/iso-octane in a countercurrent stratified two-phase flow system[J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26):5958-5974.
[20] PADOIN N, DALTOE A T O, RANGEL L P, et al. Heat and mass transfer modeling for multicomponent multiphase flow with CFD[J]. International Journal of Heat and Mass Transfer, 2014, 73:239-249.
[21] HAELSSIG J B, TREMBLAY A Y, THIBAULT J, et al. Direct numerical simulation of interphase heat and mass transfer in multicomponent vapour-liquid flows[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20):3947-3960.
[22] CUI X, LI X, SUI H, et al. Computational fluid dynamics simulations of direct contact heat and mass transfer of a multicomponent two-phase film flow in an inclined channel at sub-atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22):5808-5818.
[23] LIDE D. CRC handbook of chemistry and physics[J]. American Journal of the Medical Sciences, 2003, 257(6):423.
[24] SCHEPPER D K S C, HEYNDERICKX G J, MARIN G B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers & Chemical Engineering, 2009, 33(1):122-132.
[25] MEBARKI G, RAHAL S. Numerical simulation and control of two-phase flow with evaporation in a vertical tube submitted to a conjugate heat transfer[J]. Journal of Energy and Power Engineering, 2013, 7:1282-1292.
[26] FANG C, DAVID M, ROGACS A, et al. Volume of fluid simulation of boiling two-phase flow in a vapor-venting microchannel[J]. Frontiers in Heat and Mass Transfer, 2010, 1:013002.
[27] 魏敬华, 潘良明, 袁德文, 等. 过冷流动沸腾相变过程汽泡特性的VOF方法模拟[J]. 核动力工程, 2012, 33(6):65-71. WEI Jinghua, PAN Liangming, YUAN Dewen, et al. VOF simulation of bubble characteristics of subcooled flow boiling[J]. Nuclear Power Engineering, 2012, 33(6):65-71.
[28] CHEN S, YANG Z, DUAN Y. Simulation of condensation flow in a rectangular microchannel[J]. Chemical Engineering and Processing:Process Intensification, 2014, 76:60-69.
[29] GORLE C, LEE H, HOUDHMAND F. Validation study for VOF simulations of boiling in a microchannel[C]. ASME 2015 International Technical Conference and Exhibition & on Packaging and Intergration of Electronic and Photonic Microsystems. San Francisco, USA, 2015.
[30] MAGNINI M, PULVIRENTI B, THOME J R. Numerical investigation of the influence of leading and sequential bubbles on slug flow boiling within a microchannel[J]. International Journal of Thermal Sciences, 2013, 71:36-52.
[31] 李祥东, 汪荣顺, 黄荣国, 等. 垂直圆管内液氮流动沸腾的理论模型及数值模拟[J]. 化工学报, 2006, 57(3):491-497. LI Xiangdong, WANG Rongshun, HUANG Rongguo, et al. Modelling and numerical simulation of boiling flow of liquid nitrogen in vertical tube[J]. Journal of Chemical Industry and Engineering, 2006, 57(3):491-497.
[32] WANG C, CONG T, QIU S, et al. Numerical prediction of subcooled wall boiling in the secondary side of SG tubes coupled with primary coolant[J]. Annals of Nuclear Energy, 2014, 63:633-645.
[33] 窦从从, 毛羽, 王娟, 等. 高压高过冷度下过冷流动沸腾数值模拟[J]. 化工学报, 2010, 61(3):580-586. DOU Congcong, MAO Yu, WANG Juan, et al. Numerical simulation of subcooled boiling flow under high pressure and high subcooling condition[J]. Journal of Chemical Industry and Engineering, 2010, 61(3):580-586.
[34] KURUL N, PODOWSKI M Z. Multidimensional effects in forced convection subcooled boiling[C]//Boiling, Critical Heat Flux, & Post Critical Heat Flux, 1990.
[35] ROY R, KANG S, ZARATE J, et al. Turbulent subcooled boiling flow-experiments and simulations[J]. Journal of Heat Transfer, 2001, 124(1):73-93.
[36] YU J, MA H, JIANG Y. A numerical study of heat transfer and pressure drop of hydrocarbon mixture refrigerant during boiling in vertical rectangular minichannel[J]. Applied Thermal Engineering, 2017, 112:1343-1352.
[37] GIBOU F, FEDKIW R P, CHENG L, et al. A second-order-accurate symmetric discretization of the poisson equation on irregular domains[J]. Journal of Computational Physics, 2002, 176(1):205-227.
[38] NGUYEN D Q, FEDKIW R P, KANG M. A boundary condition capturing method for incompressible flame discontinuities[J]. Journal of Computational physics, 2001, 172(1):71-98.
[39] PAN Z, WEIBEL J A, GARIMELLA S V. A saturated-interface-volume phase change model for simulating flow boiling[J]. International Journal of Heat and Mass Transfer, 2016, 93:945-956.
[40] GANAPATHY H, SHOOSHTARI A, CHOO K, et al. Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels[J]. International Journal of Heat and Mass Transfer, 2013, 65:62-72.
[41] JURIC D, TRYGGVASON G. Computations of boiling flows[J]. International Journal of Multiphase Flow, 1998, 24(3):387-410.
[42] ZHANG J, WEN J, DENG S, et al. 2D numerical study on flow boiling of zeotropic mixture isobutane/pentane in internal countercurrent flow system[J]. Applied Thermal Engineering, 2017, 114:1247-1255.
[43] GUO D Z, SUN D L. Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method[J]. Numerical Heat Transfer. Part A:Applications, 2011, 59(11):857-881.
[44] WELCH S W J, RACHIDI T. Numerical computation of film boiling including conjugate heat transfer[J]. Numerical Heat Transfer. Part B:Fundamentals, 2002, 42(1):35-53.
[45] ALEXIADES V, SOLOMON A D, LUNARDINI V J. Mathematical modeling of melting and freezing processes[J]. Journal of Solar Energy Engineering, 1992, 115(2):121.
[46] KLIMENKO V V. Film boiling on a horizontal plate-New correlation[J]. International Journal of Heat & Mass Transfer, 1981, 24(1):69-79.
[47] BERENSON P J. Film-boiling heat transfer from a horizontal surface[J]. Journal of Heat Transfer, 1960, 83(3):351-356.
[48] XIAO Q, YANG N, ZHAO Z X. 3-D numerical simulation of the vapor-liquid flow at the shell side of shell-and-tube heat exchangers[C]. 201624th International Conference on Nuclear Engineering, Charlotte, North Carolina, USA, 2016:26-30.
[49] GEANKOPLIS C J. Transport processes and separation process principles:(includes unit operations)[M]. Prentice Hall Professional Technical Reference, 2003.
[50] AKANKSHA, PANT K K, SRIVASTAVA V K. Mass transport correlation for CO2 absorption in aqueous monoethanolamine in a continuous film contactor[J]. Chemical Engineering & Processing Process Intensification, 2008, 47(5):920-928.
[51] STRUMILLO C, PORTER K E. The evaporation of carbon tetrachloride in a wetted-wall column[J]. AIChE Journal, 2004, 11(6):1139-1142.
[52] CRAUSE J C, NIEUWOUDT I. Mass transfer in a short wetted-wall column. 1. Pure components[J]. Industrial & Engineering Chemistry Research, 1999, 38(12):4928-4932.
[53] ROCHA J A, BRAVO J L, FAIR J R. Distillation columns containing structured packings:a comprehensive model for their performance. 2. Mass-transfer model[J]. Industrial & Engineering Chemistry Research, 1996, 35(5):641-651.
[54] DUDUKOVIC A, MILOSEVIC V. Gas-solid and gas-liquid mass-transfer coefficients[J]. AIChE Journal, 1996, 42(1):269-270.
[55] KAFESJIAN R, PLANK C A, GERHARD E R. Liquid flow and gas phase mass transfer in wetted-wall towers[J]. AIChE Journal, 1961, 7(3):463-466.
[56] GILLILAND E R, SHERWOOD T K. Diffusion of vapors into air streams[J]. Industrial & Engineering Chemistry, 1934, 26(7):516-523. |