Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (08): 2892-2903.DOI: 10.16085/j.issn.1000-6613.2017-2176
Previous Articles Next Articles
SHAO Yawei, DENG Shuai, SU Wen, ZHAO Li, LU Pei, ZHAO Dongpeng
Received:
2017-10-24
Revised:
2017-12-27
Online:
2018-08-05
Published:
2018-08-05
邵亚伟, 邓帅, 苏文, 赵力, 卢培, 赵东鹏
通讯作者:
赵力,教授,博士生导师,研究方向为太阳能高效热利用、新型制冷剂的应用开发、新型热力循环。
作者简介:
邵亚伟(1992-),男,硕士研究生,研究方向为制冷工质、流动沸腾数值模拟。E-mail:yw_shao@tju.edu.cn。
基金资助:
CLC Number:
SHAO Yawei, DENG Shuai, SU Wen, ZHAO Li, LU Pei, ZHAO Dongpeng. Research progress on source models for numerical simulation of flow boiling of refrigerant[J]. Chemical Industry and Engineering Progress, 2018, 37(08): 2892-2903.
邵亚伟, 邓帅, 苏文, 赵力, 卢培, 赵东鹏. 制冷工质流动沸腾数值模拟中源项模型的研究进展[J]. 化工进展, 2018, 37(08): 2892-2903.
[1] 吕凤勇, 马虎根, 何红萍, 等. 微通道内非共沸混合制冷剂的流动沸腾特性[J]. 化工进展, 2012, 31(7):1449-1453. LÜ Fengyong, MA Hugen, HE Hongping, et al. Investigation on flow boiling heat transfer of non-azeotropic refrigerant mixture in microchannel[J]. Chemical Industry and Engineering Progress, 2012, 31(7):1449-1453. [2] CALM J M. The next generation of refrigerants-Historical review, considerations, and outlook[J]. International Journal of Refrigeration, 2008, 31(7):1123-1133. [3] YANG Z, PENG X F, YE P. Numerical and experimental investigation of two phase flow during boiling in a coiled tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(5/6):1003-1016. [4] WU H L, PENG X F, YE P, et al. Simulation of refrigerant flow boiling in serpentine tubes[J]. International Journal of Heat and Mass Transfer, 2007, 50(5/6):1186-1195. [5] 罗小平, 张霖, 刘波. 微细通道纳米制冷剂流动沸腾阻力特性[J]. 化工进展, 2016, 35(12):3763-3770. LUO Xiaoping, ZHANG Lin, LIU Bo. A study on flow boiling resistance of nanorefrigerant in rectangular microchannels[J]. Chemical Industry and Engineering Progress, 2016, 35(12):3763-3770. [6] LI M, DANG C, HIHARA E. Flow boiling heat transfer of HFO1234yf and R32 refrigerant mixtures in a smooth horizontal tube:Part I. Experimental investigation[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14):3437-3446. [7] SU W, ZHAO L, DENG S. Recent advances in modeling the vapor-liquid equilibrium of mixed working fluids[J]. Fluid Phase Equilibria, 2017, 432:28-44. [8] BAO J, ZHAO L. Experimental research on the influence of system parameters on the composition shift for zeotropic mixture (isobutane/pentane) in a system occurring phase change[J]. Energy Conversion and Management, 2016, 113:1-15. [9] KNUDSEN M. The kinetic theory of gases:some modern aspects, methuen's monographs physical subjects[M]. London:Methuen and Co. Ltd., 1934. [10] SCHRAGE R W. A theoretical study of interphase mass transfer[M]. New York:Columbia University Press, 1953. [11] TANASAWA I. Advances in condensation heat transfer[M]//HARTNETT J P, IRVINE T F, CHO Y I. Advances in Heat Transfer. Amsterdam:Elsevier, 1991, 21:55-139. [12] LEE W H. A pressure iteration scheme for two-phase flow modeling[J]. Multiphase Transport Fundamentals, Reactor Safety, Applications, 1980, 407:432. [13] ISHⅡ M. Thermo-fluid dynamics theory of two-phase flow[M]. Nasa Sti/recon Technical Report A, 1975:75. [14] GIBOU F, CHEN L, NGUYEN D, et al. A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change[J]. Journal of Computational Physics, 2007, 222(2):536-555. [15] NICHITA B A, THOME J R. A level set method and a heat transfer model implemented into FLUENT for modeling of microscale two phase flows[EB/OL].[2017-10-10]. https://infoscience.epfl.ch/record/151629/Nato_Nichita_Thome.pdf. [16] SUN D, XU J, WANG L. Development of a vapor-liquid phase change model for volume-of-fluid method in FLUENT[J]. International Communications in Heat and Mass Transfer, 2012, 39(8):1101-1106. [17] SUN D, XU J, CHEN Q. Modeling of the evaporation and condensation phase-change problems with FLUENT[J]. Numerical Heat Transfer, Part B:Fundamentals, 2014, 66(4):326-342. [18] HARDT S, WONDRA F. Evaporation model for interfacial flows based on a continuum-field representation of the source terms[J]. Journal of Computational Physics, 2008, 227(11):5871-5895. [19] BANERJEE R. Turbulent conjugate heat and mass transfer from the surface of a binary mixture of ethanol/iso-octane in a countercurrent stratified two-phase flow system[J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26):5958-5974. [20] PADOIN N, DALTOE A T O, RANGEL L P, et al. Heat and mass transfer modeling for multicomponent multiphase flow with CFD[J]. International Journal of Heat and Mass Transfer, 2014, 73:239-249. [21] HAELSSIG J B, TREMBLAY A Y, THIBAULT J, et al. Direct numerical simulation of interphase heat and mass transfer in multicomponent vapour-liquid flows[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20):3947-3960. [22] CUI X, LI X, SUI H, et al. Computational fluid dynamics simulations of direct contact heat and mass transfer of a multicomponent two-phase film flow in an inclined channel at sub-atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22):5808-5818. [23] LIDE D. CRC handbook of chemistry and physics[J]. American Journal of the Medical Sciences, 2003, 257(6):423. [24] SCHEPPER D K S C, HEYNDERICKX G J, MARIN G B. Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker[J]. Computers & Chemical Engineering, 2009, 33(1):122-132. [25] MEBARKI G, RAHAL S. Numerical simulation and control of two-phase flow with evaporation in a vertical tube submitted to a conjugate heat transfer[J]. Journal of Energy and Power Engineering, 2013, 7:1282-1292. [26] FANG C, DAVID M, ROGACS A, et al. Volume of fluid simulation of boiling two-phase flow in a vapor-venting microchannel[J]. Frontiers in Heat and Mass Transfer, 2010, 1:013002. [27] 魏敬华, 潘良明, 袁德文, 等. 过冷流动沸腾相变过程汽泡特性的VOF方法模拟[J]. 核动力工程, 2012, 33(6):65-71. WEI Jinghua, PAN Liangming, YUAN Dewen, et al. VOF simulation of bubble characteristics of subcooled flow boiling[J]. Nuclear Power Engineering, 2012, 33(6):65-71. [28] CHEN S, YANG Z, DUAN Y. Simulation of condensation flow in a rectangular microchannel[J]. Chemical Engineering and Processing:Process Intensification, 2014, 76:60-69. [29] GORLE C, LEE H, HOUDHMAND F. Validation study for VOF simulations of boiling in a microchannel[C]. ASME 2015 International Technical Conference and Exhibition & on Packaging and Intergration of Electronic and Photonic Microsystems. San Francisco, USA, 2015. [30] MAGNINI M, PULVIRENTI B, THOME J R. Numerical investigation of the influence of leading and sequential bubbles on slug flow boiling within a microchannel[J]. International Journal of Thermal Sciences, 2013, 71:36-52. [31] 李祥东, 汪荣顺, 黄荣国, 等. 垂直圆管内液氮流动沸腾的理论模型及数值模拟[J]. 化工学报, 2006, 57(3):491-497. LI Xiangdong, WANG Rongshun, HUANG Rongguo, et al. Modelling and numerical simulation of boiling flow of liquid nitrogen in vertical tube[J]. Journal of Chemical Industry and Engineering, 2006, 57(3):491-497. [32] WANG C, CONG T, QIU S, et al. Numerical prediction of subcooled wall boiling in the secondary side of SG tubes coupled with primary coolant[J]. Annals of Nuclear Energy, 2014, 63:633-645. [33] 窦从从, 毛羽, 王娟, 等. 高压高过冷度下过冷流动沸腾数值模拟[J]. 化工学报, 2010, 61(3):580-586. DOU Congcong, MAO Yu, WANG Juan, et al. Numerical simulation of subcooled boiling flow under high pressure and high subcooling condition[J]. Journal of Chemical Industry and Engineering, 2010, 61(3):580-586. [34] KURUL N, PODOWSKI M Z. Multidimensional effects in forced convection subcooled boiling[C]//Boiling, Critical Heat Flux, & Post Critical Heat Flux, 1990. [35] ROY R, KANG S, ZARATE J, et al. Turbulent subcooled boiling flow-experiments and simulations[J]. Journal of Heat Transfer, 2001, 124(1):73-93. [36] YU J, MA H, JIANG Y. A numerical study of heat transfer and pressure drop of hydrocarbon mixture refrigerant during boiling in vertical rectangular minichannel[J]. Applied Thermal Engineering, 2017, 112:1343-1352. [37] GIBOU F, FEDKIW R P, CHENG L, et al. A second-order-accurate symmetric discretization of the poisson equation on irregular domains[J]. Journal of Computational Physics, 2002, 176(1):205-227. [38] NGUYEN D Q, FEDKIW R P, KANG M. A boundary condition capturing method for incompressible flame discontinuities[J]. Journal of Computational physics, 2001, 172(1):71-98. [39] PAN Z, WEIBEL J A, GARIMELLA S V. A saturated-interface-volume phase change model for simulating flow boiling[J]. International Journal of Heat and Mass Transfer, 2016, 93:945-956. [40] GANAPATHY H, SHOOSHTARI A, CHOO K, et al. Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels[J]. International Journal of Heat and Mass Transfer, 2013, 65:62-72. [41] JURIC D, TRYGGVASON G. Computations of boiling flows[J]. International Journal of Multiphase Flow, 1998, 24(3):387-410. [42] ZHANG J, WEN J, DENG S, et al. 2D numerical study on flow boiling of zeotropic mixture isobutane/pentane in internal countercurrent flow system[J]. Applied Thermal Engineering, 2017, 114:1247-1255. [43] GUO D Z, SUN D L. Phase change heat transfer simulation for boiling bubbles arising from a vapor film by the VOSET method[J]. Numerical Heat Transfer. Part A:Applications, 2011, 59(11):857-881. [44] WELCH S W J, RACHIDI T. Numerical computation of film boiling including conjugate heat transfer[J]. Numerical Heat Transfer. Part B:Fundamentals, 2002, 42(1):35-53. [45] ALEXIADES V, SOLOMON A D, LUNARDINI V J. Mathematical modeling of melting and freezing processes[J]. Journal of Solar Energy Engineering, 1992, 115(2):121. [46] KLIMENKO V V. Film boiling on a horizontal plate-New correlation[J]. International Journal of Heat & Mass Transfer, 1981, 24(1):69-79. [47] BERENSON P J. Film-boiling heat transfer from a horizontal surface[J]. Journal of Heat Transfer, 1960, 83(3):351-356. [48] XIAO Q, YANG N, ZHAO Z X. 3-D numerical simulation of the vapor-liquid flow at the shell side of shell-and-tube heat exchangers[C]. 201624th International Conference on Nuclear Engineering, Charlotte, North Carolina, USA, 2016:26-30. [49] GEANKOPLIS C J. Transport processes and separation process principles:(includes unit operations)[M]. Prentice Hall Professional Technical Reference, 2003. [50] AKANKSHA, PANT K K, SRIVASTAVA V K. Mass transport correlation for CO2 absorption in aqueous monoethanolamine in a continuous film contactor[J]. Chemical Engineering & Processing Process Intensification, 2008, 47(5):920-928. [51] STRUMILLO C, PORTER K E. The evaporation of carbon tetrachloride in a wetted-wall column[J]. AIChE Journal, 2004, 11(6):1139-1142. [52] CRAUSE J C, NIEUWOUDT I. Mass transfer in a short wetted-wall column. 1. Pure components[J]. Industrial & Engineering Chemistry Research, 1999, 38(12):4928-4932. [53] ROCHA J A, BRAVO J L, FAIR J R. Distillation columns containing structured packings:a comprehensive model for their performance. 2. Mass-transfer model[J]. Industrial & Engineering Chemistry Research, 1996, 35(5):641-651. [54] DUDUKOVIC A, MILOSEVIC V. Gas-solid and gas-liquid mass-transfer coefficients[J]. AIChE Journal, 1996, 42(1):269-270. [55] KAFESJIAN R, PLANK C A, GERHARD E R. Liquid flow and gas phase mass transfer in wetted-wall towers[J]. AIChE Journal, 1961, 7(3):463-466. [56] GILLILAND E R, SHERWOOD T K. Diffusion of vapors into air streams[J]. Industrial & Engineering Chemistry, 1934, 26(7):516-523. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[5] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[6] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[7] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[8] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[9] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[10] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[11] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[12] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[13] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[14] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[15] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 492
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 357
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |