[1] CHEN H M,HUANG D P,SU X Y,et al. Fabrication of Pd/γ-Al2O3 catalysts for hydrogenation of 2-ethyl-9,10-anthraquinoneassisted by plant-mediated strategy[J]. Chemical Engineering Journal,2015,262:356-363.
[2] 王伟建,潘智勇,李文林,等. 蒽醌法流化床与固定床的发展趋势[J]. 化工进展,2016,35(6):1766-1773. WANG W J,PAN Z Y,LI W L,et al. Recent advances in development of the fluidized bed and fixed bed in theanthraquinone route[J]. Chemical Industry and Engineering Progress,2016,35(6):1766-1773.
[3] GUO Y Y,DAI C N,LEI Z G,et al. Synthesis of hydrogen peroxide over Pd/SiO2/COR monolith catalysts by anthraquinone method[J]. Catalysis Today,2016,276:36-45.
[4] 陈雪莹,乔明华,贺鹤勇. 载体对负载型Ni-B催化剂催化2-乙基蒽醌加氢制H2O2反应性能的影响[J]. 催化学报,2011,32(2):325-332. CHEN X Y,QIAO M H,HE H Y. Effects of supports on catalytic properties of the supported Ni-B catalysts forselective hydrogenation of 2-ethylanthraquinone to H2O2[J]. Chinese Journal of Catalysis,2011,32(2):325-332.
[5] 刘春雪,米镇涛,王莅. 2-戊基蒽醌氢化本征动力学研究[J]. 高校化学工程学报,2007,21(3):530-533. LIU C X,MI Z T,WANG L. Intrinsic kinetic study on hydrogenation of 2-amylanthraquinone[J]. Journal of Chemical Engineering of Chinese Universities,2007,21(3):530-533.
[6] 王丰,徐贤伦.添加ZrO2的Pd/Al2O3催化剂及其催化蒽醌加氢性能[J].化工进展,2012,31(1):107-111. WANG F,XU X L. ZrO2 doped Pd/Al2O3 catalyst and its catalytic performance onanthraquinone hydrogenation[J]. Chemical Industry and Engineering Progress,2012,31(1):107-111.
[7] 丁彤,秦永宁,马智. 过渡金属对Pd/γ-Al2O3催化剂活性的影响[J]. 催化学报,2002,23(3):227-230. DING T,QIN Y N,MA Z. Effect of transition metal on the activity of γ-Al2O3-supported Pd catalyst[J]. Chinese Journal of Catalysis,2002,23(3):227-230.
[8] 杜书伟,王榕,林炳裕,等. BaO对蒽醌氢化制过氧化氢Pd/Al2O3催化剂性能的影响[J]. 催化学报,2008,29(5):463-467. DU S W,WANG R,LIN B Y,et al. Effect of BaO on the performance of Pd/Al2O3 catalyst for H2O2 production from anthraquinone hydrogenation[J]. Chinese Journal of Catalysis,2008,29(5):463-467.
[9] Fulvio P F,Brosey R I,Jaroniec M. Synthesis of mesoporous alumina from boehmite in the presence of triblockcopolymer[J]. ACS Applied Materials & Interfaces,2010,2(2):588-593.
[10] 汪泽华,蔡卫权,郭蕾,等. P123辅助SB粉溶胶制备大孔径介孔γ-Al2O3及其对甲基蓝的强化吸附性能[J]. 化工学报,2012,63(8):2623-2628. WANG Z H,CAI W Q,GUO L,et al. P123-assisted synthesis of enlarged mesoporous γ-Al2O3from SB pseudoboehmite sol and its performance towards methyl blue[J]. CIESC Journal,2012,63(8):2623-2628.
[11] 卓俊琳,蔡卫权,罗晓雷. 一锅水热-浸渍法制备Pd-Fe/SiO2催化剂及其蒽醌加氢性能增强[J]. 化工进展,2016,35(12):3913-3918. ZHUO J L,CAI W Q,LUO X L. One-pot hydrothermal-impregnation synthesis of Pd-Fe/SiO2catalyst with enhanced catalytic performance towards 2-ethylanthraquinone hydrogenation[J]. Chemical Industry and Engineering Progress,2016,35(12):3913-3918.
[12] Li M,Wu X D,Liu S,et al. Effects of baria on propane oxidation activity of Pd/Al2O3 catalyst:Pd-BaO interaction and reactionroutes[J]. Progress in Natural Science:Materials International,2014,24(3):280-286.
[13] Yang M,Li S L,Chen G W. High-temperature steam reforming of methanol over ZnO-Al2O3 catalysts[J]. Applied Catalysis B:Environmental,2011,101(3):409-416.
[14] Yang M,Men Y,Li S L,et al. Hydrogen production by steam reforming of dimethyl ether over ZnO-Al2O3 bi-functionalcatalyst[J]. International Journal of Hydrogen Energy,2012,37(10):8360-8369.
[15] KRUK M,JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials[J]. Chemistry of Materials,2001,13(10):3169-3183.
[16] Tang P G,Chai Y Y,Feng J T,et al. Highly dispersed Pd catalyst for anthraquinone hydrogenation supported on alumina derived from a pseudoboehmite precursor[J]. Applied Catalysis A:General,2014,469:312-319.
[17] Tanikawa K,Egawa C. Effect of barium addition on CO oxidation activity of palladium catalysts[J]. Applied Catalysis A:General,2011,403:12-17.
[18] Wang Z Q,Yang L,Zhang R,et al. Selective hydrogenation of phenylacetylene over bimetallic Pd-Cu/Al2O3 and Pd-Zn/Al2O3 catalysts[J]. Catalysis Today,2016,264:37-43.
[19] Kamachi T,Ogata T,Mori E,et al. Computational exploration of the mechanism of the hydrogenation step of the anthraquinone process for hydrogen peroxide production[J]. Journal of Physical Chemistry C,2015,119(16):8748-8754.
[20] Han Y,He Z Y,Wang S L,et al. Performance of facet-controlled Pd nanocrystals in 2-ethylanthraquinone hydrogenation[J]. Catalysis Science & Technology,2015,5(5):2630-2639.
[21] OMAR S,PALOMAR J,GÓMEZ-SAINERO L M,et al. Density functional theory analysis of dichloromethane and hydrogen interaction with Pd clusters:first step to simulate catalytic hydrodechlorination[J]. Journal of Physical Chemistry C,2011,115(29):14180-14192.
[22] YUAN E X,WANG L,ZHANG X W,et al. Density functional theory analysis of anthraquinone derivative hydrogenation over palladium catalyst[J]. ChemPhysChem,2016,17(23):3974-3984.
[23] Yang Y,KIM D S,Knez M,et al. Influence of temperature on evolution of coaxial ZnO/Al2O3 one-dimensional heterostructures:from core-shell nanowires to spinel nanotubes and porous nanowires[J]. Journal of Physical Chemistry C,2008,112(11):4068-4074.
[24] LI X T,SU H J,REN G Y,et al. A highly stable Pd/SiO2/cordierite monolith catalyst for 2-ethyl-anthraquinone hydrogenation[J]. RSC Advances,2015,5(122):100968-100977. |