Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (03): 938-946.DOI: 10.16085/j.issn.1000-6613.2017-0885
Previous Articles Next Articles
FAN Dongna1, LIU Xiaoran2, WANG Xicheng2, YU Yifeng1, CHEN Aibing1
Received:
2017-05-15
Revised:
2017-06-20
Online:
2018-03-05
Published:
2018-03-05
樊冬娜1, 刘晓然2, 王喜成2, 于奕峰1, 陈爱兵1
通讯作者:
陈爱兵,教授,从事多孔材料、能源与催化化学方面的研究。
作者简介:
樊冬娜(1991-),女,硕士研究生,从事生物基戊二醇的研究。
基金资助:
CLC Number:
FAN Dongna, LIU Xiaoran, WANG Xicheng, YU Yifeng, CHEN Aibing. Catalytic conversion of biomass-derived furfural into pentanediols[J]. Chemical Industry and Engineering Progress, 2018, 37(03): 938-946.
樊冬娜, 刘晓然, 王喜成, 于奕峰, 陈爱兵. 生物基糠醛催化转化制备戊二醇的研究进展[J]. 化工进展, 2018, 37(03): 938-946.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-0885
[1] DEGUCHI S,TSUJⅡ K,HORIKOSHI K. Crystalline-to-amorphous transformation of cellulose in hot and compressed-water and its implications for hydrothermal conversion[J]. Green Chemistry,2008,10(2):191-196. [2] BOZELL J J,MOENS L,ELLIOTT D C,et al. Production of levulinic acid and use as a platform chemical for derived products[J]. Resources,Conservation and Recycling,2000,28:227-239. [3] 高美香,刘宗章,张敏华. 生物质转化制糠醛工艺的研究进展[J]. 化工进展,2013,32(4):878-884. GAO M X,LIU Z Z,ZHANG M H. Progress in the production of furfural from biomass[J]. Chemical Industry and Engineering Progress,2013,32(4):878-884. [4] KARINEN R,VILONEN K,NIEMELA M. Biorefining:heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural[J]. ChemSusChem,2011,4(8):1002-1016. [5] BOZELL J J,PETERSEN G R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited[J]. Green Chemistry,2010,12(4):539-554. [6] NAKAGAWA Y,TAMURA M,TOMISHIGE K. Catalytic conversions of furfural to pentanediols[J]. Catalysis Surveys from Asia,2015,19(4):249-256. [7] BINDER J B,RAINES R T. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals[J]. Journal of the American Chemical Society,2009,131:1979-1985. [8] LANGE J P,HEIDE V D E,BUIJTENEN V J,et al. Furfural——a promising platform for lignocellulosic biofuels[J]. ChemSusChem,2012,5(1):150-166. [9] 徐保明,唐强,罗岩,等. 1,2-戊二醇的新合成方法及工艺优化研究[J]. 高校化学工程学报,2014,28(1):92-97. XU B M,TANG Q,LUO Y,et al. Study on the new synthetic method of 1,2-pentanediol and process optimization thereof[J]. Journal of Chemical Engineering of Chinese Universities,2014,28(1):92-97. [10] NAKAGAWA Y,TOMISHIGE K. Production of 1,5-pentanediol from biomass via furfural and tetrahydrofurfuryl alcohol[J]. Catalysis Today,2012,195(1):136-143. [11] NAKAGAWA Y,TAMURA M,TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. ACS Catalysis,2013,3(12):2655-2668. [12] 马要耀,邬一凡. 国内外1,5-戊二醇和1,6-己二醇市场分析[J]. 精细与专用化学品,2016,24(12):5-10. MA Y Y,WU Y F. Global market analysis of 1,5-pentanediol and 1,6-hexanediol[J]. Fine and Specialty Chemicals,2016,24(12):5-10. [13] SERRANO R J C,LUQUE R,SEPULVEDA E A. Transformations of biomass-derived platform molecules:from high added-value chemicals to fuels via aqueous-phase processing[J]. Chemical Society Reviews,2011,40(11):5266-5281. [14] CHHEDA J N,ROMAN L Y,DUMESIC J A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono-and poly-saccharides[J]. Green Chemistry,2007,9(4):342-350. [15] CHAREONLIMKUN A,CHAMPREDA V,SHOTIPRUK A,et al. Reactions of C5 and C6-sugars,cellulose,and lignocellulose under hot compressed water(HCW)in the presence of heterogeneous acid catalysts[J]. Fuel,2010,89(10):2873-2880. [16] ZHANG J,LIN L,LIU S. Efficient production of furan derivatives from a sugar mixture by catalytic process[J]. Energy & Fuels,2012,26(7):4560-4567. [17] 丁小兵. 1,2-戊二醇的合成[J]. 安徽化工,2002,119(5):22-23. DING X B. Synthesis of 1,2-pentanediol[J]. Anhui Chemical Industry,2002,119(5):22-23. [18] 黄集钺,白晓琳,程光剑,等. 1,5-戊二醇的制备与应用[J]. 化工中间体,2007(2):11-13. HUANG J Y,BAI X L,CHENG G J,et al. Preparation and application of 1,5-pentanediol[J]. Chemical Intermediate,2007(2):11-13. [19] KOSO S,FURIKADO I,SHIMAO A,et al. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol[J]. Chemical Communications,2009,15:2035-2037. [20] KOSO S,UEDA N,SHINMI Y,et al. Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2[J]. Journal of Catalysis,2009,267(1):89-92. [21] CHEN K,KOSO S,KUBOTA T,et al. Chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1,6-hexanediol over rhenium-modified carbon-supported rhodium catalysts[J]. ChemCatChem,2010,2(5):547-555. [22] CHIA M,PAGAN T Y J,HIBBITTS D,et al. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts[J]. Journal of the American Chemical Society,2011,133(32):12675-12689. [23] CHEN K,MORI K,WATANABE H,et al. C-O bond hydrogenolysis of cyclic ethers with OH groups over rhenium-modified supported iridium catalysts[J]. Journal of Catalysis,2012,294:171-183. [24] PONEC V. On the role of promoters in hydrogenations on metals;α,β-unsaturated aldehydes and ketones[J]. Applied Catalysis A:General,1997,149:27-48. [25] MAKI-ARVELA P,HAJEK J,SALMI T,et al. Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts[J]. Applied Catalysis A:General,2005,292:1-49. [26] YU W,POROSOFF M D,CHEN J G. Review of Pt-based bimetallic catalysis:from model surfaces to supported catalysts[J]. Chemical Reviews,2012,112(11):5780-5817. [27] RODIANSONO,KHAIRI S,HARA T,et al. Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni-Sn alloy catalysts[J]. Catalysis Science & Technology,2012,2(10):2139-2145. [28] NAKAGAWA Y,NAKAZAWA H,WATANABE H,et al. Total hydrogenation of furfural over a silica-supported nickel catalyst prepared by the reduction of a nickel nitrate precursor[J]. ChemCatChem,2012,4(11):1791-1797. [29] CHEN B,LI F,HUANG Z,et al. Tuning catalytic selectivity of liquid-phase hydrogenation of furfural via synergistic effects of supported bimetallic catalysts[J]. Applied Catalysis A:General,2015,500:23-29. [30] MERAT N,GODAWA C,GASET A. High selective production of tetrahydrofurfuryl alcohol:Catalytic hydrogenation of furfural and furfuryl alcohol[J]. Journal of Chemical Technology & Biotechnology,1990,48:145-159. [31] BIRADAR N S,HENGNE A M,BIRAJDAR S N,et al. Single-pot formation of THFAL via catalytic hydrogenation of FFR over Pd/MFI catalyst[J]. ACS Sustainable Chemistry & Engineering,2014,2(2):272-281. [32] NAKAGAWA Y,TAKADA K,TAMURA M,et al. Total hydrogenation of furfural and 5-hydroxymethylfurfural over supported Pd-Ir alloy catalyst[J]. ACS Catalysis,2014,4(8):2718-2726. [33] SCHNIEPP L E,GELLER H H. Prepartion of dihydropyran,sigma-hydroxyvaleraldehyde and 1,5-pentanediol from tetrahydrofurfuryl alcohol[J]. Journal of the American Chemical Society,1946,68(8):1646-1648. [34] 丁璟,赵俊琦,程时标,等. 生物基1,6-己二醇的研究进展[J]. 化工进展,2015,34(12):4209-4213. DING J,ZHAO J Q,CHENG S B,et al. Advances in production of biobased 1,6-HDO[J]. Chemical Industry and Engineering Progress,2015,34(12):4209-4213. [35] SEMAN M,KONDO J N,DOMEN K,et al. Reactive and inert surface species observed during methanol oxidation over silica-supported molybdenum oxide[J]. Journal of Physical Chemistry B,2002,106:12965-12977. [36] KOSO S,WATANABE H,OKUMURA K,et al. Comparative study of Rh-MoOx and Rh-ReOx supported on SiO2 for the hydrogenolysis of ethers and polyols[J]. Applied Catalysis B:Environmental,2012,111:27-37. [37] AMADA Y,SHINMI Y,KOSO S,et al. Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReOx/SiO2 catalyst[J]. Applied Catalysis B:Environmental,2011,105(1-2):117-127. [38] KOSO S,WATANABE H,OKUMURA K,et al. Stable low-valence ReOx cluster attached on Rh metal particles formed by hydrogen reduction and its formation mechanism[J]. Journal of Physical Chemistry C,2012,116(4):3079-3090. [39] AMADA Y,WATANABE H,TAMURA M,et al. Structure of ReOx clusters attached on the Ir metal surface in Ir-ReOx/SiO2 for the hydrogenolysis reaction[J]. Journal of Physical Chemistry C,2012,116(44):23503-23514. [40] NAKAGAWA Y,SHINMI Y,KOSO S,et al. Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst[J]. Journal of Catalysis,2010,272(2):191-194. [41] SHINMI Y,KOSO S,KUBOTA T,et al. Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water[J]. Applied Catalysis B:Environmental,2010,94(3/4):318-326. [42] SHIMAO A,KOSO S,UEDA N,et al. Promoting effect of Re addition to Rh/SiO2 on glycerol hydrogenolysis[J]. Chemistry Letters,2009,38(6):540-541. [43] AMADA Y,KOSO S,NAKAGAWA Y,et al. Hydrogenolysis of 1,2-propanediol for the production of biopropanols from glycerol[J]. ChemSusChem,2010,3(6):728-736. [44] NAKAGAWA Y,NING X,AMADA Y,et al. Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2[J]. Applied Catalysis A:General,2012,433/434:128-134. [45] AMADA Y,WATANABE H,HIRAI Y,et al. Production of biobutanediols by the hydrogenolysis of erythritol[J]. ChemSusChem,2012,5(10):1991-1999. [46] KOSO S,NAKAGAWA Y,TOMISHIGE K. Mechanism of the hydrogenolysis of ethers over silica-supported rhodium catalyst modified with rhenium oxide[J]. Journal of Catalysis,2011,280(2):221-229. [47] TOMISHIGE K,TAMURA M,NAKAGAWA Y. Role of Re species and acid cocatalyst on Ir-ReOx/SiO2 in the C-O hydrogenolysis of biomass-derived substrates[J]. Chemical Record,2014,14(6):1041-1054. [48] CHATTERJEE M,KAWANAMI H,ISHIZAKA T,et al. An attempt to achieve the direct hydrogenolysis of tetrahydrofurfuryl alcohol in supercritical carbon dioxide[J]. Catalysis Science & Technology,2011,1(8):1466-1471. [49] LIU S,AMADA Y,TAMURA M,et al. One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir-ReOx/SiO2bifunctional catalyst[J]. Green Chemistry,2014,16(2):617-626. [50] LIU S B,AMADA Y,TAMURA M,et al. Performance and characterization of rhenium-modified Rh-Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol[J]. Catalysis Science & Technology,2014,4(8):2535-2549. [51] WANG Z Q,PHOLJAROEN B,LI M X,et al. Chemoselective hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Ir-MoOx/SiO2catalyst[J]. Journal of Energy Chemistry,2014,23(4):427-434. [52] XU W J,WANG H F,LIU X H,et al. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst[J]. Chemical Communications,2011,47(13):3924-3926. [53] WU J,SHEN Y M,LIU C H,et al. Vapor phase hydrogenation of furfural to furfuryl alcohol over environmentally friendly Cu-Ca/SiO2 catalyst[J]. Catalysis Communications,2005,6(9):633-637. [54] NAGARAJA B M,KUMAR V S,SHASIKALA V,et al. A highly efficient Cu/MgO catalyst for vapour phase hydrogenation of furfural to furfuryl alcohol[J]. Catalysis Communications,2003,4(6):287-293. [55] NAGARAJA B M,PADMASRI A H,RAJU B D,et al. Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu-MgO coprecipitated catalysts[J]. Journal of Molecular Catalysis A:Chemical,2007,265(1/2):90-97. [56] DIEZ V K,APENTEGUIA C R,DI COSIMO J I. Aldol condensation of citral with acetone on MgO and alkali-promoted MgO catalysts[J]. Journal of Catalysis,2006,240(2):235-244. [57] MIZUGAKI T,YAMAKAWA T,NAGATSU Y,et al. Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst[J]. ACS Sustainable Chemistry & Engineering,2014,2(10):2243-2247. [58] 王艳芹,马荣芳,卢冠忠,等. 一种用于呋喃类衍生物开环加氢的金属/稀土基复合催化剂:CN201510055386.0[P]. 2015-08-05. WANG Y Q,MA R F,LU G Z,et al. A metal/rare composite catalyst for ring-opening hydrogenation of furan derivatives:CN201510055386.0[P]. 2015-08-05. [59] 崔健,崔晓桐. 糠醛一步加氢生产1,2-戊二醇的方法:201210397581.8[P]. 2013-02-13. CUI J,CUI X T. One-step hydrogenation of furfural to 1,2-pentanediol:CN201210397581.8[P]. 2013-02-13. [60] TAYLOR M J,DURNDELL L J,ISAACS M A,et al. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions[J]. Applied Catalysis B:Environmental,2016,180:580-585. [61] BEHRENS M,LOLLI G,MURATOVA N,et al. The effect of Al-doping on ZnO nanoparticles applied as catalyst support[J]. Physical Chemistry Chemical Physics,2013,15(5):1374-1381. [62] BELL J M,KUBLER D G,SARTWELL P,et al. Acetal formation for ketones and aromatic aldehydes with methanol[J]. Journal of Organic Chemistry,1965,30:4284-4292. [63] BEL'SKⅡ I F,SHUIKIN N I. Catalytic hydrogenation and hydrogenolysis of furan compounds[J]. Russian Chemical Reviews,1963,32(6):307-321. [64] 王艳芹,徐文杰,卢冠忠,等. 一种呋喃衍生物开环加氢反应的催化剂:201110001536.1[P]. 2011-05-25. WANG Y Q,XU W J,LU G Z,et al. A catalyst for ring-opening hydrogenation of furan derivatives:CN201110001536.1[P]. 2011-05-25. [65] LIU H L,HUANG Z W,ZHAO F,et al. Efficient hydrogenolysis of biomass-derived furfuryl alcohol to 1,2-and 1,5-pentanediols over nonprecious Cu-Mg3AlO4.5 bifunctional catalyst[J]. Catalysis Science & Technology,2016,6:668-671. [66] 黄志威,陈静,刘海龙,等. 一种呋喃衍生物选择氢解制戊二醇的方法:201510475234.6[P]. 2015-12-09. HUANG Z W,CHEN J,LIU H L,et al. A method for selective hydrogenolysis of furan derivatives to pentanediol:CN201510475234.6[P]. 2015-12-09. [67] LIU H L,HUANG Z W,KANG H X,et al. Selective hydrogenolysis of biomass-derived furfuryl alcohol into 1,2-and 1,5-pentanediol over highly dispersed Cu-Al2O3 catalysts[J]. Chinese Journal of Catalysis,2016,37(5):700-710 |
[1] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[2] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[3] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[4] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[5] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[6] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[7] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[8] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[9] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[10] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[11] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[12] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[13] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[14] | XIAO Yaoxin, ZHANG Jun, HU Sheng, SHAN Rui, YUAN Haoran, CHEN Yong. Cu-Zn catalyzed hydrogenation of furfural with methanol as hydrogen donor [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1341-1352. |
[15] | ZHENG Yunwu, PEI Tao, LI Donghua, WANG Jida, LI Jirong, ZHENG Zhifeng. Production of hydrocarbon-rich bio-oil by catalytic biomass pyrolysis over metal oxide improved P/HZSM-5 catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1353-1364. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |