Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (01): 350-358.DOI: 10.16085/j.issn.1000-6613.2017-0687
Previous Articles Next Articles
HAN Wenliang, CHEN Haiming
Received:
2017-04-18
Revised:
2017-07-12
Online:
2018-01-05
Published:
2018-01-05
韩文亮, 陈海明
通讯作者:
韩文亮(1980-),男,博士,讲师,研究方向为环境污染及其防治。
作者简介:
韩文亮(1980-),男,博士,讲师,研究方向为环境污染及其防治。E-mail:wl_han@163.com。
基金资助:
CLC Number:
HAN Wenliang, CHEN Haiming. Ultrasound enhanced degradation of decabromodiphenyl ether by montmorillonite supported Ni-Fe nanoparticles[J]. Chemical Industry and Engineering Progress, 2018, 37(01): 350-358.
韩文亮, 陈海明. 蒙脱石搭载纳米Ni-Fe超声降解十溴二苯醚[J]. 化工进展, 2018, 37(01): 350-358.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-0687
[1] ABBASI G,BUSER A M,SOEHL A,et al. Stocks and flows of PBDEs in products from use to waste in the U.S. and Canada from 1970 to 2020[J]. Environmental Science & Technology,2015,49(3):1521-1528. [2] HAN W L,FAN T,XU B H,et al. Passive sampling of polybrominated diphenyl ethers in indoor and outdoor air in Shanghai,China:seasonal variations,sources,and inhalation exposure[J]. Environmental Science and Pollution Research,2016,23(6):5771-5781. [3] 韩文亮,刘豫,陈海明,等. 厦门室内多溴二苯醚的沉降通量、季节变化与人体暴露水平[J]. 环境科学,2016,37(3):834-846. HAN W L,LIU Y,CHEN H M,et al. Indoor deposition flux,seasonal variations and human exposure levels of polybrominated diphenyl ethers in Xiamen,China[J]. Environmental Science,2016,37(3):834-846. [4] 韩文亮,陈海明,陈兴童. 厦门室内降尘的沉降通量与季节变化[J]. 环境化学,2016,35(3):491-499. HAN W L,CHEN H M,CHEN X T. Deposition flux and seasonal variations of indoor dustfall in Xiamen,China[J]. Environmental Chemistry,2016,35(3):491-499. [5] 孙文文,周林,韩文亮,等. 电子垃圾拆解对台州氯代/溴代二(口恶)英浓度和组成的影响[J]. 生态毒理学报,2016,11(2):330-338. SUN W W,ZHOU L,HAN W L,et al. Impact of e-waste dismantling activities on the levels and compositions of PCDD/Fs and PBDD/Fs in the atmosphere of Taizhou[J]. Asian Journal of Ecotoxicology,2016,11(2):330-338. [6] SU G Y,LETCHER R J,CRUMP D,et al. Sunlight irradiation of highly brominated polyphenyl ethers generates polybenzofuran products that alter dioxin-responsive mRNA expression in chicken hepatocytes[J]. Environmental Science & Technology,2016,50(5):2318-2327. [7] EZZATAHMADI N,AYOKO G A,MILLAR G J,et al. Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions:a review[J]. Chemical Engineering Journal,2017,312:336-350. [8] XIE Y Y,CHENG W,TSANG P E,et al. Remediation and phytotoxicity of decabromodiphenyl ether contaminated soil by zero valent iron nanoparticles immobilized in mesoporous silica microspheres[J]. Journal of Environmental Management,2016,166:478-483. [9] MUKHERJEE R,KUMAR R,SINHA A,et al. A review on synthesis,characterization,and applications of nano zero valent iron (nZVI) for environmental remediation[J]. Critical Reviews in Environmental Science and Technology,2016,46(5):443-466. [10] TOMIZAWA M,KUROSU S,KOBAYASHI M,et al. Zero-valent iron treatment of dark brown colored coffee effluent:contributions of a core-shell structure to pollutant removals[J]. Journal of Environmental Management,2016,183:478-487. [11] 谢青青,姚楠. 纳米零价铁的制备及应用研究进展[J]. 化工进展, 2017,36(6):2208-2214. XIE Q Q,YAO N. Progress of preparation and application of nanoscale zero-valent iron[J]. Chemical Industry and Engineering Progress,2017,36(6):2208-2214. [12] TAN L,LU S Y,FANG Z Q,et al. Enhanced reductive debromination and subsequent oxidative ring-opening of decabromodiphenyl ether by integrated catalyst of nZVI supported on magnetic Fe3O4 nanoparticles[J]. Applied Catalysis B:Environmental,2017,200:200-210. [13] 韩文亮,陈海明,陈兴童. 改性零价铁降解多溴二苯醚的研究进展[J]. 环境化学,2017,36(7):1474-1483. HAN W L,CHEN H M,CHEN X T. Research progress on the degradation of polybrominated diphenyl ethers by modified zero valent iron[J]. Environmental Chemistry,2017,36(7):1474-1483. [14] 宋世琨,苏益明,代朝猛,等. 纳米硫化铁在环境保护中的应用研究进展[J]. 化工进展,2016,35(1):248-254. SONG S K,SU Y M,DAI C M,et al. Recent advances in the application of iron sulfide nanoparticles in environment[J]. Chemical Industry and Engineering Progress,2016,35(1):248-254. [15] 修瑞瑞,何世颖,宋海亮,等. 改性硅藻土负载纳米零价铁去除水中硝酸盐氮[J]. 化工学报,2016,67(9):3888-3894. XIU R R,HE S Y,SONG H L,et al. Removal of nitrate nitrogen by nanoscale zero-valent iron supported on modified diatomite[J]. CIESC Journal,2016,67(9):3888-3894. [16] HE D,MA X M,JONES A M,et al. Mechanistic and kinetic insights into the ligand-promoted depassivation of bimetallic zero-valent iron nanoparticles[J]. Environmental Science:Nano,2016,3(4):737-744. [17] XIE Y Y,FANG Z Q,CHENG W,et al. Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles:Influencing factors,kinetics and mechanism[J]. Science of The Total Environment,2014,485/486:363-370. [18] LIU Z T,GU C G,YE M,et al. Debromination of polybrominated diphenyl ethers by attapulgite-supported Fe/Ni bimetallic nanoparticles:influencing factors,kinetics and mechanism[J]. Journal of Hazardous Materials,2015,298:328-337. [19] 祝婷,罗序燕,邓金梅,等. 多孔材料负载型水处理剂对金属离子废水的应用研究进展[J]. 化工进展,2016,35(7):2186-2194. ZHU T,LUO X Y,DENG J M,et al. Research progress on application of metal ions wastewater with water treatment agent supported on porous materials[J]. Chemical Industry and Engineering Progress,2016,35(7):2186-2194. [20] ZHUANG Y,AHN S,SEYFFERTH A L,et al. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic,impregnated,and nanoscale zerovalent iron[J]. Environmental Science & Technology,2011,45(11):4896-4903. [21] TSO C P,SHIH Y H. The influence of carboxymethylcellulose (CMC)on the reactivity of Fe NPs toward decabrominated diphenyl ether:the Ni doping,temperature,pH,and anion effects[J]. Journal of Hazardous Materials,2017,322:145-151. [22] 樊明德,郭浩喆,张丽杰,等. 蒙脱石和聚乙烯吡咯烷酮界面作用对零价铁纳米颗粒制备及其性能调控的影响与机理[J]. 化工进展,2016,35(11):3563-3569. FAN M D,GUO H Z,ZHANG L J,et al. Controllable synthesis and characterization of zero-valent iron nanoparticles directed by interfacial interactions of montmorillonite and polyvinylpyrrolidone[J]. Chemical Industry and Engineering Progress,2016,35(11):3563-3569. [23] LIU D M,TANG H,ZHAO Y,et al. Characterization of the adsorption behavior of aqueous cadmium on nanozero-valent iron based on orthogonal experiment and surface complexation modeling[J]. Chinese Journal of Chemical Engineering,2016,24(9):1270-1274. [24] ZOU X L,ZHOU T,MAO J,et al. Synergistic degradation of antibiotic sulfadiazine in a heterogeneous ultrasound-enhanced Fe0/persulfate Fenton-like system[J]. Chemical Engineering Journal,2014,257:36-44. [25] LUO S,YANG S G,WANG X D,et al. Reductive degradation of Tetrabromobisphenol A over iron-silver bimetallic nanoparticles under ultrasound radiation[J]. Chemosphere,2010,79(6):672-678. [26] LUO S,YANG S G,SUN C,et al. Feasibility of a two-stage reduction/subsequent oxidation for treating Tetrabromobisphenol A in aqueous solutions[J]. Water Research,2011,45(4):1519-1528. [27] XIE Y Y,FANG Z Q,QIU X H,et al. Comparisons of the reactivity,reusability and stability of four different zero-valent iron-based nanoparticles[J]. Chemosphere,2014,108:433-436. [28] SOHN K,KANG S W,AHN S,et al. Fe(0)nanoparticles for nitrate reduction:stability,reactivity,and transformation[J]. Environmental Science & Technology,2006,40(17):5514-5519. [29] WANG X Y,WANG A Q,MA J,et al. Facile green synthesis of functional nanoscale zero-valent iron and studies of its activity toward ultrasound-enhanced decolorization of cationic dyes[J]. Chemosphere,2017,166:80-88. [30] LI Y M,ZHANG Y,LI J F,et al. Enhanced removal of pentachlorophenol by a novel composite:nanoscale zero valent iron immobilized on organobentonite[J]. Environmental Pollution,2011,159(12):3744-3749. [31] CHEN Z X,JIN X Y,CHEN Z L,et al. Removal of methyl orange from aqueous solution using bentonite-supported nanoscale zero-valent iron[J]. Journal of Colloid and Interface Science,2011,363(2):601-607. [32] WANG F F,GAO Y,SUN Q,et al. Degradation of microcystin-LR using functional clay supported bimetallic Fe/Pd nanoparticles based on adsorption and reduction[J]. Chemical Engineering Journal,2014,255:55-62. [33] MARKOVA Z,SISKOVA K M,FILIP J,et al. Air stable magnetic bimetallic Fe-Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal[J]. Environmental Science & Technology,2013,47(10):5285-5293. [34] QIU X H,FANG Z Q,LIANG B,et al. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres[J]. Journal of Hazardous Materials,2011,193:70-81. [35] 明磊强. 零价铁去除水体中多溴联苯醚的研究[D]. 上海:上海交通大学,2010. MING L Q. Research on the removal of PBDEs in water by Fe0[D]. Shanghai:Shanghai Jiaotong University,2010. [36] PANG Z H,YAN M Y,JIA X S,et al. Debromination of decabromodiphenyl ether by organo-montmorillonite-supported nanoscale zero-valent iron:preparation,characterization and influence factors[J]. Journal of Environmental Sciences,2014,26(2):483-491. [37] PENG X X,TIAN Y,LIU S W,et al. Degradation of TBBPA and BPA from aqueous solution using organo-montmorillonite supported nanoscale zero-valent iron[J]. Chemical Engineering Journal,2017,309:717-724. [38] 琚丽婷. 蒙脱石负载零价纳米铁镍或纳米铁银双金属处理三氯生的研究[D]. 广州:华南理工大学,2013. JU L T. Montmorillonite-supported zero-valent Fe/Ni or Fe/Ag bimetallic particles and their application for the removal of triclosan[D]. Guangzhou:South China University of Technology,2013. [39] ZHOU X B,LV B H,ZHOU Z M,et al. Evaluation of highly active nanoscale zero-valent iron coupled with ultrasound for chromium(Ⅵ) removal[J]. Chemical Engineering Journal,2015,281:155-163. [40] LUO S,YANG S G,XUE Y G,et al. Two-stage reduction/subsequent oxidation treatment of 2,2',4,4'-tetrabromodiphenyl ether in aqueous solutions:kinetic,pathway and toxicity[J]. Journal of Hazardous Materials,2011,192(3):1795-1803. [41] YU K,GU C,BOYD S A,et al. Rapid and extensive debromination of decabromodiphenyl ether by smectite clay-templated subnanoscale zero-valent iron[J]. Environmental Science & Technology,2012,46(16):8969-8975. [42] WANG L X,GENG J,WANG W H,et al. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction[J]. Nano Research,2015,8(12):3815-3822. [43] YANG J R,SUN H W. Degradation of gamma-hexachlorocyclohexane using carboxymethylcellulose-stabilized Fe/Ni nanoparticles[J]. Water Air and Soil Pollution,2015,226:280. [44] WEI J J,QIAN Y J,LIU W J,et al. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe[J]. Journal of Environmental Sciences,2014,26(5):1162-1170. [45] 李长芳,胡勇有,黄国富. 纳米Pd/Fe催化甲醇/水中2,2',4,4'-四溴联苯醚(BDE-47)还原脱溴[J]. 环境科学学报,2012,32(10):2353-2359. LI C F,HU Y Y,HUANG G F. Catalytic debromination of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) by Pd/Fe nanoparticles in methanol/water[J]. Acta Scientiae Circumstantiae,2012,32(10):2353-2359. [46] LIANG D W,YANG Y H,XU W W,et al. Nonionic surfactant greatly enhances the reductive debromination of polybrominated diphenyl ethers by nanoscale zero-valent iron:mechanism and kinetics[J]. Journal of Hazardous Materials,2014,278:592-596. [47] FANG Z Q,QIU X H,CHEN J H,et al. Debromination of polybrominated diphenyl ethers by Ni/Fe bimetallic nanoparticles:influencing factors,kinetics,and mechanism[J]. Journal of Hazardous Materials,2011,185(2/3):958-969. [48] FANG Z Q,QIU X H,CHEN J H,et al. Degradation of the polybrominated diphenyl ethers by nanoscale zero-valent metallic particles prepared from steel pickling waste liquor[J]. Desalination,2011,267(1):34-41. [49] WANG L C,NI S Q,GUO C L,et al. One pot synthesis of ultrathin boron nitride nanosheet-supported nanoscale zerovalent iron for rapid debromination of polybrominated diphenyl ethers[J]. Journal of Materials Chemistry A,2013,1(21):6379-6387. [50] XU X H,ZHOU H Y,ZHOU M. Catalytic amination and dechlorination of para-nitrochlorobenzene(p-NCB) in water over palladium-iron bimetallic catalyst[J]. Chemosphere,2006,62(5):847-852. [51] 李长芳. 纳米Pd/Fe催化还原降解2,2',4,4'-四溴联苯醚的研究[D]. 广州:华南理工大学,2012. LI C F. Study on catalytic debromination of 2,2',4,4'-tetrabromodiphenyl ether by nanoscale Pd/Fe bimetallic particles[D]. Guangzhou:South China University of Technology,2012. [52] HE N,LI P J,ZHOU Y C,et al. Catalytic dechlorination of polychlorinated biphenyls in soil by palladium-iron bimetallic catalyst[J]. Journal of Hazardous Materials,2009,164(1):126-132. [53] HUANG Q,LIU W,PENG P A,et al. Reductive debromination of tetrabromobisphenol A by Pd/Fe bimetallic catalysts[J]. Chemosphere,2013,92(10):1321-1327. [54] LUO S,YANG S G,SUN C,et al. Improved debromination of polybrominated diphenyl ethers by bimetallic iron-silver nanoparticles coupled with microwave energy[J]. Science of the Total Environment,2012,429:300-308. [55] CAPOCELLI M,JOYCE E,LANCIA A,et al. Sonochemical degradation of estradiols:incidence of ultrasonic frequency[J]. Chemical Engineering Journal,2012,210:9-17. [56] WU X G,JOYCE E M,MASON T J. Evaluation of the mechanisms of the effect of ultrasound on Microcystis aeruginosa at different ultrasonic frequencies[J]. Water Research,2012,46(9):2851-2858. [57] WENG X L,GUO M Y,LUO F,et al. One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract:biomolecules identification,characterization and catalytic activity[J]. Chemical Engineering Journal,2017,308:904-911. [58] LI Y,LI X Q,HAN D H,et al. New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo-and tetrachlorobisphenol A[J]. Chemical Engineering Journal,2017,311:173-182. [59] YUAN N,ZHANG G K,GUO S,et al. Enhanced ultrasound-assisted degradation of methyl orange and metronidazole by rectorite-supported nanoscale zero-valent iron[J]. Ultrasonics Sonochemistry,2016,28:62-68. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[3] | ZHANG Jie, WANG Fangfang, XIA Zhonglin, ZHAO Guangjin, MA Shuangchen. Current SF6 emission, emission reduction and future prospects under “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 447-460. |
[4] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[5] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | SHU Bin, CHEN Jianhong, XIONG Jian, WU Qirong, YU Jiangtao, YANG Ping. Necessity analysis of promoting the development of green methanol under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4471-4478. |
[8] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[9] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[10] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[11] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[12] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[13] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[14] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[15] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |