Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (01): 140-148.DOI: 10.16085/j.issn.1000-6613.2017-0668
Previous Articles Next Articles
FU Xingchen, YAN Dejian, LIU Jikai
Received:
2017-04-17
Revised:
2017-08-01
Online:
2018-01-05
Published:
2018-01-05
付星晨, 颜德健, 刘冀锴
通讯作者:
刘冀锴,副教授。
作者简介:
付星晨(1989-),男,硕士研究生,主要从事光催化材料的制备及性能表征。
基金资助:
CLC Number:
FU Xingchen, YAN Dejian, LIU Jikai. Research progress of fabrication and photoelectrochemical properties based on Cu2O photoelectrodes[J]. Chemical Industry and Engineering Progress, 2018, 37(01): 140-148.
付星晨, 颜德健, 刘冀锴. 基于氧化亚铜光电极的制备及其光电化学性能的研究进展[J]. 化工进展, 2018, 37(01): 140-148.
[1] PARACCHINO A,LAPORTE V,SIVULA K,et al.Highly active oxide photocathode for photoelectrochemical water reduction[J]. Nature Materials,2011,10(6):456-461. [2] HARA M,KONDO T,KOMODA M,et al.Cu2O as a photocatalyst for overall water splitting under visible light irradiation[J].Chemical Communications,1998(3):357-358. [3] IKEDA S,TAKATA T,KONDO T,et al.Mechano-catalytic overall water splitting[J].Chemical Communications,1998(20):2185-2186. [4] YANG H,YANG J O,YANG A D,et al.Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles[J].Materials Research Bulletin,2006,41(7):1310-1318. [5] AKIMOTO K,ISHIZUKA S,YANAGITA M,et al.Thin film deposition of Cu2O and application for solar cells[J].Solar Energy,2006,80(6):715-722. [6] SHISHIYANU S T,SHISHIYANU T S,LUPAN O I.Novel NO2 gas sensor based on cuprous oxide thin films[J]. Sensors and Actuators B:Chemical,2006,113(1):468-476. [7] JAYARAMULU K,SURESH V M,MAJI T K.Stabilization of Cu2O nanoparticles on a 2D metal-organic framework for catalytic Huisgen 1,3-dipolar cycloaddition reaction[J].Dalton Transactions,2015,44:83-86. [8] KIM J,KWON Y,LEE H.Metal ion-assisted reshaping of Cu2O nanocrystals for catalytic applications[J].Journal of Materials Chemistry A,2013,1:14183-14188. [9] 宫慧勇,蒋晶晶,刘韶泽,等.纳米氧化亚铜的形貌控制合成及光催化降解有机染料的研究进展[J].化工进展,2015,34(11):3915-3925. GONG H Y,JIANG J J,LIU S Z,et al.Research progress in controllable synthesis of Cu2O with different morphologies and their property for photodegrading organic dye[J].Chemical Industry and Engineering Progress,2015,34(11):3915-3925. [10] 康园丽,王桂赟,刘宗园,等.含铜半导体氧化物的光催化应用进展[J].化工进展,2012,31(1):69-73. KANG Y L,WANG G Y,LIU Z Y,et al.Photocatalytic research progress of Cu-based semiconductor oxides[J].Chemical Industry and Engineering Progress,2012,31(1):69-73. [11] CHANG X X,WANG T,ZHANG P,et al.Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products[J].Angewandte Chemie,2016,55(31):8840-8845. [12] THERESE G H A,KAMATH P V.Electrochemical synthesis of metal oxides and hydroxides[J].Chemistry of Materials,2000,12(5):1195-1204. [13] HU C,NIAN J,TENG S.Electrodeposited p-type Cu2O as photocatalyst for H2 evolution from water reduction in the presence of WO3[J].Solar Energy Materials & Solar Cells,2008,92(9):1071-1076. [14] YANG C,TRAN P D,BOIX P P,et al.Engineering a Cu2O/NiO/Cu2MoS4 hybrid photocathode for H2 generation in water[J].Nanoscale,2014,6:6506-6510. [15] MCSHANE C M,CHOI K.Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth[J].Journal of the American Chemical Society,2009,131(7):2561-2569. [16] WANG P,WU H,TANG Y,et al.Electrodeposited Cu2O as photoelectrodes with controllable conductivity type for solar energy conversion[J].The Journal of Physical Chemistry C,2015,119(47):26275-26282. [17] YU L,XIONG L,YU Y.Cu2O homojunction solar cells:F-doped n-type thin film and highly improved efficiency[J].The Journal of Physical Chemistry C,2015,119(40):22803-22811. [18] YANG Y,XU D,WU Q,et al.Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction[J].Scientific Reports,2016,6:35158. [19] TILLEY S D,SCHREIER M,AZEVEDO J,et al.Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes[J].Advanced Functional Materials,2014,24(3):303-311. [20] PARACCHINO A,BRAUER J C,MOSER J,et al.Synthesis and characterization of high-photoactivity electrodeposited Cu2O solar absorber by photoelectrochemistry and ultrafast spectroscopy[J].The Journal of Physical Chemistry C,2012,116(13):7341-7350. [21] QI H,WOLFE J,FICHOU D,et al.Cu2O photocathode for low bias photoelectrochemical water splitting enabled by NiFe-layered double hydroxide Co-catalyst[J].Scientific Reports,2016,6:30882. [22] MUSSELMAN B K P,WISNET A,IZA D C,et al.Strong efficiency improvements in ultra-low-cost inorganic nanowire solar cells[J].Advanced Energy Materials,2010,22(35):E254-E258. [23] HO-KIMURA S,MONIZ S J A,TANG J,et al.A method for synthesis of renewable Cu2O junction composite electrodes and their photoelectrochemical properties[J]. ACS Sustainable Chemistry & Engineering,2015,3(4):710-717. [24] SIRIPALA W,IVANOVSKAYA A,JARAMILLO T F,et al.A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis[J]. Solar Energy Materials & Solar Cell,2003,77(3):229-237. [25] WU L L,TSUI L,SWAMI N,et al.Photoelectrochemical stability of electrodeposited Cu2O films[J].The Journal of Physical Chemistry C,2010,114(26):11551-11556. [26] HAN K,TAO M.Electrochemically deposited p-n homojunction cuprous oxide solar cells[J].Solar Energy Materials & Solar Cells,2009,93(1):153-157. [27] KATAYAMA J,ITO K,MATSUOKA M,et al.Performance of Cu2O/ZnO solar cell prepared by two-step electrodeposition[J]. Journal of Applied Electrochemistry,2004,34(7):687-692. [28] CUI J B,GIBSON U J.A simple two-step electrodeposition of Cu2O/ZnO nanopillar solar cells[J].The Journal of Physical Chemistry C,2010,114(14):6408-6412. [29] WANG P,TANG Y M,WEN X M,et al.Enhanced visible light-induced charge separation and charge transport in Cu2O-based photocathodes by urea treatment[J].ACS Applied Materials & Interfaces,2015,7(36):19887-19893. [30] HOU J G,CHENG H J,TAKEDA O,et al.Three-dimensional bimetal-graphene-semiconductor coaxial nanowire arrays to harness charge flow for the photochemical reduction of carbon dioxide[J].Angewandte Chemie,2015,54(29):8480-8484. [31] LUO J S,STEIER L,SON M,et al.Cu2O nanowire photocathodes for efficient and durable solar water splitting[J]. Nano Letters,2016,16(3):1848-1857. [32] ZHANG Z H,DUA R,ZHANG L B,et al.Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction[J].ACS Nano,2013,7(2):1709-1717. [33] SHARMA D,UPADHYAY S,SATSANGI V R,et al.Improved photoelectrochemical water splitting performance of Cu2O/SrTiO3 heterojunction photoelectrode[J].The Journal of Physical Chemistry C,2014,118(44):25320-25329. [34] YANG Z,CHIANG C K,CHANG H-T.Synthesis of fluorescent and photovoltaic Cu2O nanocubes[J].Nanotechnology,2008,19(2).DOI:10.1088/0957-4484/19102/025604. [35] ZHAO Y F,YANG Z Y,ZHANG Y X,et al.Cu2O decorated with cocatalyst MoS2 for solar hydrogen production with enhanced efficiency under visible light[J].The Journal of Physical Chemistry C,2014,118(26):14238-14245. [36] AN X Q,LI K,TANG J W.Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2[J].ChemSusChem,2014,7(4):1086-1093. [37] DUCHENE J S,WILLIAMS B P,JOHNSTON-PECK A C,et al.Elucidating the sole contribution from electromagnetic near-fields in Plasmon-enhanced Cu2O photocathodes[J].Advanced Energy Materials,2016,6:1501250. [38] MINAMI T,TANAKA H,SHIMAKAWA T,et al.High-efficiency oxide heterojunction solar cells using Cu2O sheets[J]. Japanese Journal of Applied Physics,2004,43:L917-L919. [39] WANG L X,ZHAO F,HAN Q,et al.Spontaneous formation of Cu2O-g-C3N4 core-shell nanowires for photocurrent and humidity responses[J].Nanoscale,2015,7:9694-9702. [40] LIN C,LAI Y,MERSCH D,et al.Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting[J].Chemical Science,2012,3:3482-3487. [41] LI C L,LI Y B,DELAUNAY J.A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells[J]. ACS Applied Materials & Interfaces, 2014,6(1):480-486. [42] YU L,LI G J,ZHANG X S,et al.Enhanced activity and stability of carbon-decorated cuprous oxide mesoporous nanorods for CO2 reduction in artificial photosynthesis[J].ACS Catalysis,2016,6:6444-6454. [43] JIN Z X,HU Z F,YU J C,et al.Room temperature synthesis of highly active Cu/Cu2O photocathode for photoelectrochemical water splitting[J].Journal of Materials Chemistry A,2016,4:13736-13741. [44] KECSENOVITY E,ENDRÖDI B,TÓTH P S,et al.Enhanced photoelechemical performance of cuprous oxide/graphene nanohybrids[J].Journal of the American Chemical Society,2017,139:6682-6692. [45] FU K,HUANG J Z,YAO N N,et al.Hybrid nanostructure of TiO2 nanorods arrays/Cu2O with a CH3NH3PbI3 interlayers for enhanced photocatalytic activity and photoelechemical performance[J].RSC Advances,2016,6:57695-57700. [46] SHYAMAL S,HAJRA P,MANDAL H,et al.Benign role of Bi on electrodeposited Cu2O semiconductor towards photo-assisted H2 generation from water[J].Journal of Materials Chemistry A,2016,4:9244-9252. [47] MAHMOUD M A,QIAN W,EI-SAYED M A.Following charge separation on the nanoscale in Cu2O-Au nanoframe hollow nanoparticles[J].Nano Letters,2011,11(8):3285-3289. [48] HACIALIOGLU S,MENG F,JIN S.Facile and mild solution synthesis of Cu2O nanowires and nanotubes driven by screw dislocations[J].Chemical Communication,2012,48:1174-1176. [49] JONGH P E D,VANMAEKELBERGH D,KELLY J J.Cu2O:electrodeposition and Characterization[J].Chemistry of Materials,1999,11(12):3512-3517. [50] ENGEL C J,POLSON T A,SPADO J R,et al.Photoelectrochemistry of porous p-Cu2O films[J].Journal of the Electrochemical Society, 2008,155(3):F37-F42. [51] GERISCHER H.On the stability of semiconductor electrodes against photodecomposition[J].Journal of the Electroanalytical Chemistry,1997,82(1/2):133-143. [52] MORALES-GUIO C G,TILLEY S D,VRUBEL H,et al.Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst[J]. Nature Communications,2014,5:3059. [53] DUBALE A A,PAN C,TAMIRAT A G,et al.Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction[J].Journal of Materials Chemistry A,2015,3(23):12482-12499. [54] HUANG Q,KANG F,LIU H,et al.Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis[J].Journal of Materials Chemistry A,2013,1(7):2418-2425. [55] JIANG T F,XIE T F,YANG W H,et al.Photoelectrochemical and photovoltaic properties of p-n Cu2O homojunction films and their photocatalytic performance[J].The Journal of Physical Chemistry C,2013,117(9):4619-4624. [56] SCHREIER M,LUO J S,GAO P,et al.Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction[J].Journal of the American Chemical Society,2016,138(6):1938-1946. [57] BORNOZ P,ABDI F F,TILLEY S D,et al.A bismuth vanadate-cuprous oxide tandem cell for overall solar water splitting[J].The Journal of Physical Chemistry C,2014,118(30):16959-16966. [58] MORALES-GUIO C G,LIARDET L,MAYER M T,et al. Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts[J]. Angewandte Chemie International Edition,2015,54(2):664-667. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[4] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[5] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[6] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[7] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[8] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[9] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
[10] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[11] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[12] | CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Development of thermally stable fiber-based air filter materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2439-2453. |
[13] | ZHAO Chongyang, ZHAO Lei, SHI Xiangwen, HUANG Jun, LI Zhiyao, SHEN Kai, ZHANG Yaping. Effect of O2/H2O/SO2 on the adsorption of PbCl2 by modified iron-rich attapulgite at high temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2190-2200. |
[14] | FAN Sihan, YU Guoxi, LAI Chaochao, HE Huan, HUANG Bin, PAN Xuejun. Effect of abiotic modification on photochemical activity of anaerobic microbial products [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2180-2189. |
[15] | YE Haixing, CHEN Yuhao, CHEN Yi, SUN Haixiang, NIU Qingshan. Research progress of composite nanofiltration membrane for magnesium and lithium separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |