Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1236-1243.DOI: 10.16085/j.issn.1000-6613.2018-0084
Previous Articles Next Articles
Hongbin LIU(),Jin ZHANG(
),Huina XIAO,Chao XIE
Received:
2018-01-09
Revised:
2018-12-05
Online:
2019-03-05
Published:
2019-03-05
Contact:
Jin ZHANG
通讯作者:
张进
作者简介:
基金资助:
CLC Number:
Hongbin LIU,Jin ZHANG,Huina XIAO,Chao XIE. Movement analysis of solid particles during the formation of swirl field[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1236-1243.
刘洪斌,张进,肖慧娜,谢超. 固相颗粒在旋流场形成过程中的运动分析[J]. 化工进展, 2019, 38(03): 1236-1243.
几何特征 | 尺寸 | 几何特征 | 尺寸 |
---|---|---|---|
直径D | 50mm | 直段长度H | 40mm |
溢流管直径d 0 | 13mm | 溢流管插入深度h 0 | 25mm |
底流管直径 d s | 10mm | 锥角θ | 15° |
入口截面a×a | 12mm×12mm |
几何特征 | 尺寸 | 几何特征 | 尺寸 |
---|---|---|---|
直径D | 50mm | 直段长度H | 40mm |
溢流管直径d 0 | 13mm | 溢流管插入深度h 0 | 25mm |
底流管直径 d s | 10mm | 锥角θ | 15° |
入口截面a×a | 12mm×12mm |
接触对象 | 恢复系数 | 静摩擦系数 | 动摩擦系数 |
---|---|---|---|
颗粒-颗粒 | 0.3 | 0.3 | 0.01 |
颗粒-壁面 | 0.3 | 0.2 | 0.01 |
接触对象 | 恢复系数 | 静摩擦系数 | 动摩擦系数 |
---|---|---|---|
颗粒-颗粒 | 0.3 | 0.3 | 0.01 |
颗粒-壁面 | 0.3 | 0.2 | 0.01 |
材料 | 参数 | 数值 |
---|---|---|
固相 | 密度/kg·m?3 | 2500 |
粒径/μm | 60、70、80 | |
泊松比 | 0.25 | |
剪切模量/MPa | 10 | |
入口颗粒速度/m·s?1 | 2.9 | |
液相 | 密度/kg·m?3 | 998.2 |
黏度/Pa·s | 0.001 | |
入口速度/ m·s?1 | 3 | |
壁面 | 密度/ kg·m?3 | 1200 |
泊松比 | 0.3 | |
剪切模量/MPa | 10 |
材料 | 参数 | 数值 |
---|---|---|
固相 | 密度/kg·m?3 | 2500 |
粒径/μm | 60、70、80 | |
泊松比 | 0.25 | |
剪切模量/MPa | 10 | |
入口颗粒速度/m·s?1 | 2.9 | |
液相 | 密度/kg·m?3 | 998.2 |
黏度/Pa·s | 0.001 | |
入口速度/ m·s?1 | 3 | |
壁面 | 密度/ kg·m?3 | 1200 |
泊松比 | 0.3 | |
剪切模量/MPa | 10 |
1 | 任连城, 梁政, 钟功祥, 等 . 基于CFD的水力旋流器流场模拟研究[J]. 石油机械, 2005, 33(11): 15-17. |
REN L C , LIANG Z , ZHONG G X , et al . CFD-based simulation of flow field of hydrocyclones [J]. China Petroleum Machinery, 2005, 33(11): 15-17. | |
2 | 黄思 . 水力旋流器内油水分离过程的三维数值模拟[J]. 华南理工大学学报(自然科学版), 2006, 34(11): 25-28. |
HUANG S . 3D numerical simulation of oil water separation in hydrocyclone[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(11): 25-28. | |
3 | 刘晓敏, 檀润华, 蒋明虎, 等 . 水力旋流器结构形式及参数关系研究[J]. 机械设计, 2005, 22(2): 26-29. |
LIU X M , TAN R H , JIANG M H , et al . Research on structural from and parametric relations of hydrocyclones[J]. Journal of Machien Design, 2005, 22(2): 26-29. | |
4 | 苏劲, 袁智, 侍玉苗, 等 . 水力旋流器细粒分离效率优化与数值模拟[J]. 机械工程学报, 2011, 47(20): 183-190. |
SU J , YUAN Z , SHI Y M , et al . Separation efficiency optimization of liquid-solid hydrocyclone and numerical simulation [J]. Journal of Mechanical Engineering, 2011, 47(20): 183-190. | |
5 | 张亭, 王卫兵, 冯静安, 等 . 水力旋流器固液分离效率优化控制仿真[J]. 计算机仿真, 2016, 33(8): 210-213. |
ZHANG T , WANG W B , FENG J A , et al . Numerical simulation of the solid-liquid separation flow field in hydrocyclone [J]. Computer Simulation, 2016, 33(8): 210-213. | |
6 | SRIPRIYA R , SURESH N , CHANDRA S , et al . The effect of diameter and height of the inserted rod in a dense medium cyclone to suppress air core [J]. Minerals Engineering, 2013, 42: 1-8. |
7 | 喻黎明, 邹小艳, 谭弘, 等 . 基于CFD-DEM耦合的水力旋流器水沙运动三维数值模拟[J]. 农业机械学报, 2016, 47(1): 126-132. |
YU L M , ZOU X Y , TAN H , et al . 3D numerical simulation of water and sediment flow in hydrocyclone based on coupled CFD-DEM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 126-132. | |
8 | 黄思, 杨富翔, 宿向辉 . 运用CFD-DEM耦合模拟计算离心泵内非稳态固液两相流动[J]. 科技导报, 2014, 32(27): 28-31. |
HUANG S , YANG F X , SU X H . Unsteady numerical simulation for solid-liquid two-phase flow in centrifugal pump by CFD-DEM coupling [J]. Science & Technology Review, 2014, 32(27): 28-31. | |
9 | 任立波 . 稠密颗粒两相流的CFD-DEM耦合并行算法及数值模拟[D]. 济南: 山东大学, 2015. |
REN L B . A parallel CFD-DEM coupling model and numerical simulation of dense particulate two-phase flows [D]. Jinan: Shandong University, 2015. | |
10 | CHU K W , WANG B , YU A B , et al . CFD-DEM modelling of multiphase flow in dense medium cyclones [J]. Powder Technology, 2009, 193(3): 235-247. |
11 | CHU K W , KUANG S B , YU A B , et al . Prediction of wear and its effect on the multiphase flow and separation performance of dense medium cyclone [J]. Minerals Engineering, 2014, 56(2): 91-101. |
12 | 唐波 . 基于颗粒运动行为调控的旋流器分离过程研究及结构设计[D]. 上海: 华东理工大学, 2016. |
TANG B . Numerical study of the separation process and structure design by regulating the flow behavior of particle phase in hydrocyclones [D]. Shanghai: East China University of Science and Technology, 2016. | |
13 | 喻黎明, 谭弘, 邹小艳, 等 . 基于CFD-DEM耦合的迷宫流道水沙运动数值模拟[J]. 农业机械学报, 2016, 47(8): 65-71. |
YU L M , TAN H , ZOU X Y , et al . Numerical simulation of water and sediment flow in labyrinth channel based on coupled CFD-DEM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8): 65-71. | |
14 | 胡国强, 等 . 颗粒系统的离散元素法分析仿真[M]. 武汉: 武汉理工大学出版社, 2010: 25. |
HU G Q , et al . Analysis and simulation of granular system by discrete element method using EDEM [M]. Wuhan: Wuhan University of Technology Press, 2010: 25. | |
15 | 孙其诚, 王光谦 . 颗粒物质力学导论[M]. 北京: 科学出版社, 2009: 16. |
SUN Q C , WANG G Q . Analysis of the force of particulate matter [M]. Beijing: Science Press, 2009: 16. | |
16 | QIU L C , WU C Y . A hybrid DEM/CFD approach for solid-liquid flows [J]. Journal of Hydrodynamics, Ser. B, 2014, 26(1): 19-25. |
17 | TONG Z B , YANG R Y , CHU K W , et al . Numerical study of the effects of particle size and polydispersity on the agglomerate dispersion in a cyclonic flow [J]. Chemical Engineering Journal, 2010, 164(2/3): 432-441. |
18 | HSIEH K T , RAJAMANI R K . Mathematical model of the hydrocyclone based on physics of fluid flow [J]. AIChE Journal, 2010, 37(5): 735-746. |
19 | 李建明, 陈文梅, 苏晓东 . 旋流器排口比对固粒轴向流场的影响[J]. 化工机械, 1995,22(3): 132-135. |
LI J M , CHEN W M , SU X D . Influence of the cone ratio of hydrocyclones on axial velocity fields of solid particles [J]. Chemical Engineering & Machinery, 1995,22(3): 132-135. | |
20 | NEESSE T , DUECK J . Dynamic modelling of the hydrocyclone [J]. Minerals Engineering, 2007, 20(4): 380-386. |
[1] | SUN Jipeng, HAN Jing, TANG Yangchao, YAN Bowen, ZHANG Jieyao, XIAO Ping, WU Feng. Numerical simulation and optimization of operating parameters of sulfur wet molding process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 189-196. |
[2] | WANG Yunfei, QIN Rui, ZHENG Lijun, LI Yan, LI Qingping. Research progress of rotating packed bed simulation through CFD method [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9. |
[3] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[4] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[5] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
[6] | YAN Xingqing, DAI Xingtao, YU Jianliang, LI Yue, HAN Bing, HU Jun. Research progress of high-pressure hydrogen leakage and jet flow [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1118-1128. |
[7] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
[8] | YAN Zihan, CHEN Qunyun, LI Zhuo, FU Rongbing, LI Yanwei, WU Zhigen. Numerical analysis and optimization of the performance of an improved soil crushing and mixing structure [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 72-80. |
[9] | PENG Deqi, FENG Yuan, WANG Yiran, TAN Zhuowei, YU Tianlan, WU Shuying. Distribution characteristics and convergence of particles in converging-diverging tube [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4662-4672. |
[10] | GU Xin, ZHANG Qianxin, WANG Chaopeng, FANG Yunge, LI Ning, WANG Yongqing. Analysis of heat transfer and resistance performance of U-shaped baffle heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3465-3474. |
[11] | XU Hanzhuo, LIU Zhihao, SUN Baochang, ZHANG Liangliang, ZOU Haikui, LUO Yong, CHU Guangwen. Research progress in applications and numerical simulation of fluid-driven rotating equipment [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2806-2817. |
[12] | CHE Zhongjun, ZHAO Lixin, GE Yiqing. Development status of magnetic field intensificating separation of multiphase media [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2839-2851. |
[13] | CHEN Long, LI Xiaxia, LI Weixiang, QI Ri, DENG Xin, WU Binxin. Research progress in computational fluid dynamics simulation of melt-blown fabric production [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 537-553. |
[14] | ZHU Mingjun, HU Dapeng. Simulation and experimental analysis of the influence of operating parameters on oil-water-sand separation performance of three-phase decanter centrifuge [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5188-5199. |
[15] | WANG Ge, SUN Zhiwei, TAN Wei, QIU Wei, ZHU Guorui. Numerical simulation of filtration characteristics on profiled fiber array [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 30-39. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 865
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 361
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |