Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (03): 1207-1217.DOI: 10.16085/j.issn.1000-6613.2018-0999
Previous Articles Next Articles
Bin SUN1(),Shuang DONG1,Di YANG1,2(),Hongwei LI1
Received:
2018-05-14
Revised:
2018-07-21
Online:
2019-03-05
Published:
2019-03-05
Contact:
Di YANG
通讯作者:
杨迪
作者简介:
基金资助:
CLC Number:
Bin SUN,Shuang DONG,Di YANG,Hongwei LI. Heat transfer characteristics of MWCNT-water/ethylene glycol nanofluid flow in automotive radiator[J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1207-1217.
孙斌,董爽,杨迪,李洪伟. 多壁碳纳米管-水/乙二醇纳米流体在汽车散热器中的传热特性[J]. 化工进展, 2019, 38(03): 1207-1217.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0999
名称 | 种类 | 形状 | 大小 | 商家 | 纯度 |
---|---|---|---|---|---|
纳米颗粒 | MWCNT | 管状颗粒 | 20nm | 上海超威纳米科技有限公司 | ≥99.9% |
表面分散剂 | CTAC | 白色粉末状固体 | — | 上海双龙化学品厂 | ≥99% |
SDBS | 白色粉末状固体 | — | 上海双龙化学品厂 | ≥99% |
名称 | 种类 | 形状 | 大小 | 商家 | 纯度 |
---|---|---|---|---|---|
纳米颗粒 | MWCNT | 管状颗粒 | 20nm | 上海超威纳米科技有限公司 | ≥99.9% |
表面分散剂 | CTAC | 白色粉末状固体 | — | 上海双龙化学品厂 | ≥99% |
SDBS | 白色粉末状固体 | — | 上海双龙化学品厂 | ≥99% |
种类 | 密度 /kg·m-3 | 比热容 /kJ·kg-1·K-1 | 热导率 /W·m-1·K-1 | 黏度 /mPa·s |
---|---|---|---|---|
MWCNT纳米颗粒 | 2100 | 0.71 | 2860 | — |
基液(水、乙二醇以80%/20%混合液) | 1026.02 | 3.838 | 0.509 | 1.30 |
种类 | 密度 /kg·m-3 | 比热容 /kJ·kg-1·K-1 | 热导率 /W·m-1·K-1 | 黏度 /mPa·s |
---|---|---|---|---|
MWCNT纳米颗粒 | 2100 | 0.71 | 2860 | — |
基液(水、乙二醇以80%/20%混合液) | 1026.02 | 3.838 | 0.509 | 1.30 |
编号 | λ/nm | 编号 | λ/nm |
---|---|---|---|
1 | 235 | 5 | 242 |
2 | 242 | 6 | 240 |
3 | 238 | 平均 | 240 |
4 | 243 |
编号 | λ/nm | 编号 | λ/nm |
---|---|---|---|
1 | 235 | 5 | 242 |
2 | 242 | 6 | 240 |
3 | 238 | 平均 | 240 |
4 | 243 |
测量参数(仪器设备) | 精度 |
---|---|
温度(热电偶) | 0℃时精度±0.15K,100℃时精度±0.35K |
流速(流量计) | 1.0% |
压降(罗斯蒙特压差计) | 0.5% |
有效泵功(功率计) | 0.5% |
数据采集器 | 1.0% |
测量参数(仪器设备) | 精度 |
---|---|
温度(热电偶) | 0℃时精度±0.15K,100℃时精度±0.35K |
流速(流量计) | 1.0% |
压降(罗斯蒙特压差计) | 0.5% |
有效泵功(功率计) | 0.5% |
数据采集器 | 1.0% |
体积分数/% | 热导率增加率/% | 对流传热系数增加率/% |
---|---|---|
0.05 | 0.15 | 5.64 |
0.1 | 0.30 | 8.53 |
0.15 | 0.45 | 10.13 |
0.3 | 0.90 | 17.14 |
0.5 | 1.51 | 20.33 |
体积分数/% | 热导率增加率/% | 对流传热系数增加率/% |
---|---|---|
0.05 | 0.15 | 5.64 |
0.1 | 0.30 | 8.53 |
0.15 | 0.45 | 10.13 |
0.3 | 0.90 | 17.14 |
0.5 | 1.51 | 20.33 |
测试号码 | A体积分数 | B入口温度 | C纳米流体流速 | 对流传热系数隶属度 | 压降隶属度 | 有效泵功隶属度 | 综合评分 |
---|---|---|---|---|---|---|---|
1 | 1(0.15%) | 1(45℃) | 1(2L·min?1) | 0 | 0 | 0.0006 | 0.0003 |
2 | 1 | 2(55℃) | 3(6L·min?1) | 0.4612 | 0.9898 | 0.9908 | 0.9722 |
3 | 1 | 3(65℃) | 2(4L·min?1) | 0.3268 | 0.4008 | 0.2907 | 0.3293 |
4 | 2(0.3%) | 1 | 3 | 0.6886 | 0.9942 | 0.9948 | 0.9839 |
5 | 2 | 2 | 2 | 0.4507 | 0.4029 | 0.2920 | 0.3351 |
6 | 2 | 3 | 1 | 0.1907 | 0.0006 | 0 | 0.0068 |
7 | 3(0.5%) | 1 | 2 | 0.6516 | 0.4058 | 0.2937 | 0.3441 |
8 | 3 | 2 | 1 | 0.2965 | 0.0015 | 0.0003 | 0.0109 |
9 | 3 | 3 | 3 | 1 | 1 | 1 | 1 |
K 1 | 1.3018 | 1.3283 | 0.018 | ||||
K 2 | 1.3258 | 1.3182 | 1.0085 | ||||
K 3 | 1.3550 | 1.3361 | 2.9561 | ||||
极差 | 0.0532 | 0.0179 | 2.9381 | ||||
主要因素和次要因素排序 | CAB | ||||||
最佳方案 | C 3 A 3 B 3 |
测试号码 | A体积分数 | B入口温度 | C纳米流体流速 | 对流传热系数隶属度 | 压降隶属度 | 有效泵功隶属度 | 综合评分 |
---|---|---|---|---|---|---|---|
1 | 1(0.15%) | 1(45℃) | 1(2L·min?1) | 0 | 0 | 0.0006 | 0.0003 |
2 | 1 | 2(55℃) | 3(6L·min?1) | 0.4612 | 0.9898 | 0.9908 | 0.9722 |
3 | 1 | 3(65℃) | 2(4L·min?1) | 0.3268 | 0.4008 | 0.2907 | 0.3293 |
4 | 2(0.3%) | 1 | 3 | 0.6886 | 0.9942 | 0.9948 | 0.9839 |
5 | 2 | 2 | 2 | 0.4507 | 0.4029 | 0.2920 | 0.3351 |
6 | 2 | 3 | 1 | 0.1907 | 0.0006 | 0 | 0.0068 |
7 | 3(0.5%) | 1 | 2 | 0.6516 | 0.4058 | 0.2937 | 0.3441 |
8 | 3 | 2 | 1 | 0.2965 | 0.0015 | 0.0003 | 0.0109 |
9 | 3 | 3 | 3 | 1 | 1 | 1 | 1 |
K 1 | 1.3018 | 1.3283 | 0.018 | ||||
K 2 | 1.3258 | 1.3182 | 1.0085 | ||||
K 3 | 1.3550 | 1.3361 | 2.9561 | ||||
极差 | 0.0532 | 0.0179 | 2.9381 | ||||
主要因素和次要因素排序 | CAB | ||||||
最佳方案 | C 3 A 3 B 3 |
A | —— | 面积, m2 |
A s | —— | 散热管面积, m2 |
CS | —— | 综合评分 |
cp | —— | 定压比热容, kJ/(kg·K) |
D | —— | 管外径, mm |
D h | —— | 当量直径, mm |
d | —— | 管边缘小径, mm |
h | —— | 对流传热系数, W/(m2·K) |
k | —— | 热导率, W/(m·K) |
L | —— | 管长, mm |
M | —— | 决策矩阵 |
m | —— | 质量流量, kg/s |
mp | —— | 隶属度 |
Nu | —— | Nusselt数 |
Q | —— | 传热速率, W |
sm | —— | 测试号码 |
T b | —— | 特征温度, K |
T in | —— | 进口温度, K |
T out | —— | 出口温度, K |
T s | —— | 管壁温度, K |
val | —— | 测量值 |
ws | —— | 权重 |
Y | —— | 贡献矩阵 |
ρ | —— | 密度, kg/m3 |
φ | —— | 体积分数 |
? | —— | 形状因子 |
ψ | —— | 颗粒表面球形度 |
下角标 | ||
bf | —— | 基液 |
in | —— | 进口 |
nf | —— | 纳米流体 |
out | —— | 出口 |
p | —— | 纳米颗粒 |
A | —— | 面积, m2 |
A s | —— | 散热管面积, m2 |
CS | —— | 综合评分 |
cp | —— | 定压比热容, kJ/(kg·K) |
D | —— | 管外径, mm |
D h | —— | 当量直径, mm |
d | —— | 管边缘小径, mm |
h | —— | 对流传热系数, W/(m2·K) |
k | —— | 热导率, W/(m·K) |
L | —— | 管长, mm |
M | —— | 决策矩阵 |
m | —— | 质量流量, kg/s |
mp | —— | 隶属度 |
Nu | —— | Nusselt数 |
Q | —— | 传热速率, W |
sm | —— | 测试号码 |
T b | —— | 特征温度, K |
T in | —— | 进口温度, K |
T out | —— | 出口温度, K |
T s | —— | 管壁温度, K |
val | —— | 测量值 |
ws | —— | 权重 |
Y | —— | 贡献矩阵 |
ρ | —— | 密度, kg/m3 |
φ | —— | 体积分数 |
? | —— | 形状因子 |
ψ | —— | 颗粒表面球形度 |
下角标 | ||
bf | —— | 基液 |
in | —— | 进口 |
nf | —— | 纳米流体 |
out | —— | 出口 |
p | —— | 纳米颗粒 |
1 | 中商产业研究院. 2016年全球汽车销量大数据 :中国汽车销量蝉联第一[EB/OL]. . |
In the commercial and industrial research institute. Global car sales data for 2016: car sales in China for more than the first[EB/OL]. http: // . | |
2 | 韩松 . 车用发动机智能冷却系统基础问题研究[D]. 杭州:浙江大学, 2012. |
HAN Song . Fundamental vesearch on intelligent cooling system for vehicle engines[D]. Hangzhou: Zhejiang University, 2012. | |
3 | CHO H, JUNG D , FILIPI Z S , et al . Application of controllable electric coolant pump for fuel economy and cooling performance improvement [J]. Journal of Engineering for Gas Turbines & Power, 2007, 129(1): 43-50. |
4 | PANG H H , BRACE C J , AKEHURST S . Potential of a controllable engine cooling system to reduce NO x emissions in diesel engines [C]// SAE World Congress & Exhibition. SAE Technical Papers. New York: SAE International, 2004: 146-160. |
5 | BERNHARD U , FRIEDRICH B , JÜRGEN F , et al . Development of engine cooling systems by coupling CFD simulation and heat exchanger analysis programs [C]//International Congress and Exposition. SAE Technical Papers. New York: SAE International, 2001: 23-37. |
6 | KULKARNI D P , VAJJHA R S , DAS D K, et al . Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant [J]. Applied Thermal Engineering, 2008, 28(14): 1774-1781. |
7 | LEE S P, CHOI S , LI S , et al . Measuring thermal conductivity of fluids containing oxide nanoparticles [J]. ASME Journal of Heat Transfer, 1999, 121(2): 280-289. |
8 | NARAKI M , PEYGHAMBARZADEH S M , HASHEMABADI S H , et al . Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator[J]. International Journal of Thermal Sciences, 2013, 66: 82-90. |
9 | HUSSEIN A M , BAKAR R A , KADIRGAMA K , et al . Heat transfer enhancement using nanofluids in an automotive cooling system[J]. International Communications in Heat & Mass Transfer, 2014, 53(4): 195-202. |
10 | M'HAMED B , SIDIK N A C , AKHBAR M F A , et al . Experimental study on thermal performance of MWCNT nanocoolant in Perodua Kelisa, 1000 cc radiator system[J]. International Communications in Heat & Mass Transfer, 2016, 76(8): 156-161. |
11 | OLIVEIRA G A , CONTRERAS E M C , FILHO E P B . Experimental study on the heat transfer of MWCNT/water nanofluid flowing in a car radiator [J]. Applied Thermal Engineering, 2016, 111(1): 1450-1456. |
12 | ALI M, EL-LEATHY A M , AL-SOFYANY Z . The effect of nanofluid concentration on the cooling system of vehicles radiator[J]. Advances in Mechanical Engineering, 2014, 96(8): 1-13. |
13 | CHAKRABORTY S , SARKAR I , BEHERA D K , et al . Experimental investigation on the effect of dispersant addition on thermal and rheological characteristics of TiO2 nanofluid[J]. Powder Technology, 2017, 307(2): 10-24. |
14 | DAS P K, MALLIK A K , GANGULY R , et al . Synthesis and characterization of TiO2-water nanofluids with different surfactants[J]. International Communications in Heat & Mass Transfer, 2016, 75(7): 341-348. |
15 | 王宏宇,王助良,杜敏,等 . 纳米流体的制备及稳定性分析[J]. 河南科技大学学报(自然科学版), 2016,53(1): 5-8, 25. |
WANG H Y , WANG Z L , DU M , et al . Preparation and stability of nanofluids[J]. Journal of Henan University of Science and Technology (Natural Science), 2016, 53(1): 5-8, 25. | |
16 | LÜ Y Z , LI C , SUN Q , et al . Effect of dispersion method on stability and dielectric strength of transformer oil-based TiO2 nanofluids[J]. Nanoscale Research Letters, 2016, 11(1): 515-524. |
17 | PAK B C, CHO Y I . Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles[J]. Experimental Heat Transfer, 1998, 11(2): 151-170. |
18 | ŻYŁA G . Thermophysical properties of ethylene glycol based yttrium aluminum garnet (Y3Al5O12-EG) nanofluids[J]. International Journal of Heat & Mass Transfer, 2016, 92(1): 751-756. |
19 | XUAN Yimin , ROETZEL W . Conceptions for heat transfer correlation of nanofluids[J]. International Journal of Heat & Mass Transfer, 2000, 43(19): 3701-3707. |
20 | CHEN Haisheng , WITHARANA S , JIN Yi , et al . Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology [J]. Particuology, 2009, 7(2): 151-157. |
21 | BEJAN A . Convection heat transfer[J]. Wiley, 2013, 17(1): 153-232. |
22 | 郭显光 . 熵值法及其在综合评价中的应用[J]. 财贸研究, 1994(6):56-60. |
GUO X G . Entropy method and its application in comprehensive evaluation[J]. Finance and Trade Research, 1994(6): 56-60. | |
23 | MOFFAT R J . Describing the uncertainties in experimental results [J]. Experimental Thermal & Fluid Science, 1988, 1(1): 3-17. |
24 | XUAN Yimin , LI Qiang . Investigation on convective heat transfer and flow features of nanofluids[J]. Journal of Heat Transfer, 2003, 125(1): 151-155. |
25 | KAKAÇ S , PRAMUANJAROENKIJ A . Review of convective heat transfer enhancement with nanofluids[J]. International Journal of Heat & Mass Transfer, 2009, 52(13/14): 3187-3196. |
26 | WANG Xinwei , XU Xianfan , CHOI S U S . Thermal conductivity of nanoparticle-fluid mixture[J]. Journal of Thermophysics & Heat Transfer, 1999, 13(13): 474-480. |
27 | KEBLINSKI P , PHILLPOT S R , CHOI S U S , et al . Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J]. International Journal of Heat & Mass Transfer, 2002, 45(4): 855-863. |
28 | BUONGIORNO J . Convective transport in nanofluids [J]. Journal of Heat Transfer, 2006, 128(3): 240-250. |
[1] | ZHANG Dailing, DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying. Photothermal characteristics of waste toner nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798. |
[2] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[3] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[4] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[5] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[6] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[7] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[8] | YANG Yang, SUN Zhigao, LI Cuimin, LI Juan, HUANG Haifeng. Promotion on the formation of HCFC-141b hydrate under static conditions by surfactant OP-13 [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2854-2859. |
[9] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[10] | LI Ling, MA Chaofeng, LU Chunshan, YU Wanjin, SHI Nengfu, JIN Jiamin, ZHANG Jianjun, LIU Wucan, LI Xiaonian. Progress on the synthesis of 1,1,2-trifluoroethene and the catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1822-1831. |
[11] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[12] | LI Yunchuang, XIE Fangming, XI Yanan, WAN Xinyue, SUN Yuhu, ZHAO Yongfeng, LI Gen, LIU Honghai, GAO Xionghou, LIU Hongtao. Low-cost synthesis of hydrothermally stable mesoporous aluminosilicates [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1877-1884. |
[13] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
[14] | TAN Dexin, ZENG Jiaxin, LIANG Limin, SHEN Sihui, ZENG Ziqian, WANG Yanli. Effects of substituted alkyl on the properties of arylacetylenic monomers and their polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2031-2037. |
[15] | ZONG Yue, ZHANG Ruijun, GAO Shanshan, TIAN Jiayu. A review on the pressure-driven thin film composite (TFC) membranes with special stability for desalination [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2058-2067. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |