Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (07): 2031-2038,2069.DOI: 10.16085/j.issn.1000-6613.2015.07.037
Previous Articles Next Articles
WANG Haohao, ZHANG Dengfeng, WANG Qianqian, PENG Jian, HUO Peili
Received:
2014-11-21
Revised:
2015-02-09
Online:
2015-07-05
Published:
2015-07-05
王浩浩, 张登峰, 王倩倩, 彭健, 霍培丽
通讯作者:
张登峰,副教授,硕士生导师。E-mail:plum0627@163.com。
作者简介:
王浩浩(1988—),男,硕士研究生,主要研究方向为CO2捕集与地质封存。
基金资助:
CLC Number:
WANG Haohao, ZHANG Dengfeng, WANG Qianqian, PENG Jian, HUO Peili. Coal matrix swelling during CO2 sequestration in deep coal seams:A perspective[J]. Chemical Industry and Engineering Progree, 2015, 34(07): 2031-2038,2069.
王浩浩, 张登峰, 王倩倩, 彭健, 霍培丽. 深部煤层封存CO2过程中的煤基质溶胀效应[J]. 化工进展, 2015, 34(07): 2031-2038,2069.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2015.07.037
[1] Metz B, Davidson O, de Coninck H, et al. IPCC special report on carbon dioxide capture and storage(published for the intergovernmental panel on climate change)[R]. New York:Cambridge Press, 2005. [2] Cooney C M. Who should take the lead on regulating CCS?[J]. Environmental Science & Technology, 2008, 42(2):336. [3] White C M, Smith D H, Jones K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery——A review[J]. Energy & Fuels, 2005, 19(3):659-724. [4] Kuuskraa V A, Boyer C M, Kelafant A. Hunt for qualify basins goes abroad[J]. Oil & Gas Journal, 1992, 90(40):49-54. [5] Zhang D F, Cui Y J, Liu B, et al. Supercritical pure methane and CO2 adsorption on various rank coals of China:Experiments and modeling[J]. Energy & Fuels, 2011, 25(4):1891-1899. [6] Pini R, Ottiger S, Burlini L, et al. Sorption of carbon dioxide, methane and nitrogen in dry coals at high pressure and moderate temperature[J]. International Journal of Greenhouse Gas Control, 2010, 4(1):90-101. [7] Dutta P, Harpalani S, Prusty B. Modeling of CO2 sorption on coal[J]. Fuel, 2008, 87(10-11):2023-2036. [8] Kim H J, Shi Y, He J, et al. Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical conditions[J]. Chemical Engineering Journal, 2011, 171(1):45-53. [9] Kurniawan Y, Bhatia S K, Rudolph V. Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbons[J]. AIChE Journal, 2006, 52(3):957-967. [10] Majewska Z, Ceglarska-Stefanska G, Majewski S, et al. Binary gas sorption/desorption experiments on a bituminous coal:Simultaneous measurements on sorption kinetics, volumetric strain and acoustic emission[J]. International Journal of Coal Geology, 2009, 77(1-2):90-102. [11] Shimada S, Li H, Oshima Y, et al. Displacement behavior of CH4 adsorbed on coals by injecting pure CO2, N2, and CO2-N2 mixture[J]. Environmental Geology, 2005, 49(1):44-52. [12] Zhou F D, Hussain F, Cinar Y. Injecting pure N2 and CO2 to coal for enhanced coalbed methane:Experimental observations and numerical simulation[J]. International Journal of Coal Geology, 2013, 116-117:53-62. [13] Charrière D, Pokryszka Z, Behra P. Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the Lorraine basin (France)[J]. International Journal of Coal Geology, 2010, 81(4):373-380. [14] Vandamme M, Brochard L, Lecampion B, et al. Adsorption and strain:The CO2-induced swelling of coal[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(10):1489-1505. [15] Kiyama T, Nishimoto S, Fujioka M, et al. Coal swelling strain and permeability change with injecting liquid/supercritical CO2 and N2 at stress-constrained conditions[J]. International Journal of Coal Geology, 2011, 85(1):56-64. [16] Mazumder S, Wolf K H. Differential swelling and permeability change of coal in response to CO2 injection for ECBM[J]. International Journal of Coal Geology, 2008, 74(2):123-138. [17] Chareonsuppanimit P, Mohammad S A, Robinson R L, et al. Modeling gas-adsorption-induced swelling and permeability changes in coals[J]. International Journal of Coal Geology, 2014, 121:98-109. [18] Larsen J W, Flowers R A, Hall P J, et al. Structural rearrangement of strained coals[J]. Energy & Fuels, 1997, 11(5):998-1002. [19] Karacan C Ö. Swelling-induced volumetric strains internal to a stressed coal associated with CO2 sorption[J]. International Journal of Coal Geology, 2007, 72(3-4):209-220. [20] Goodman A L, Favors R N, Hill M M, et al. Structure changes in Pittsburgh No. 8 coal caused by sorption of CO2 gas[J]. Energy & Fuels, 2005, 19(4):1759-1760. [21] Walker P L, Verma S K, Rivera-Utrilla J, et al. A direct measurement of expansion in coals and macerais induced by carbon dioxide and methanol[J]. Fuel, 1988, 67(5):719-726. [22] van Heek K H. Progress of coal science in the 20th century[J]. Fuel, 2000, 79(1):1-26. [23] 袁明, 蔺华林, 李克健. 煤结构模型及其研究方法[J]. 洁净煤技术, 2013, 19(2):42-46. [24] Zhang J, Chen P C, Yuan B K, et al. Real-space identification of intermolecular bonding with atomic force microscopy[J]. Science, 2013, 342(6158):611-614. [25] Mazzotti M, Pini R, Storti G. Enhanced coalbed methane recovery[J]. The Journal of Supercritical Fluids, 2009, 47(3):619-627. [26] van Bergen F, Hol S, Spiers C. Stress-strain response of pre-compacted granular coal samples exposed to CO2, CH4, He and Ar[J]. International Journal of Coal Geology, 2011, 86(2-3):241-253. [27] Pini R, Ottiger S, Burlini L, et al. Role of adsorption and swelling on the dynamics of gas injection in coal[J]. Journal of Geophysical Research, 2009, 114(B4):B04203.1-B04203.14. [28] Pan Z J, Connell L D. Modelling of anisotropic coal swelling and its impact on permeability behaviour for primary and enhanced coalbed methane recovery[J]. International Journal of Coal Geology, 2011, 85(3-4):257-267. [29] Ottiger S, Pini R, Storti G, et al. Competitive adsorption equilibria of CO2 and CH4 on a dry coal[J]. Adsorption, 2008, 14(4):539-556. [30] Ottiger S, Pini R, Storti G, et al. Adsorption of pure carbon dioxide and methane on dry coal from the Sulcis Coal Province (SW Sardinia, Italy)[J]. Environmental Progress, 2006, 25(4):355-364. [31] Mohammad S, Fitzgerald J, Robinson R L, et al. Experimental uncertainties in volumetric methods for measuring equilibrium adsorption[J]. Energy & Fuels, 2009, 23(5):2810-2820. [32] Reucroft P J, Patel H. Gas-induced swelling in coal[J]. Fuel, 1986, 65(6):816-820. [33] Lucht L, Peppas N, Blaustein B, et al. New approaches in coal chemistry[C]//ACS Symposium Series. 1981. [34] Poling B E, Prausnitz J M, O'Connll J P. 气液物性估算手册[M]. 北京:化学工业出版社, 2006. [35] Barton A F M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters[M]. Florida:CRC Press, 1983. [36] Day S, Fry R, Sakurovs R. Swelling of Australian coals in supercritical CO2[J]. International Journal of Coal Geology, 2008, 74(1):41-52. [37] Vishal V, Ranjith P G, Singh T N. CO2 permeability of Indian bituminous coals:Implications for carbon sequestration[J]. International Journal of Coal Geology, 2013, 105:36-47. [38] Anggara F, Sasaki K, Rodrigues S, et al. The effect of megascopic texture on swelling of a low rank coal in supercritical carbon dioxide[J]. International Journal of Coal Geology, 2014, 125:45-56. [39] Cui X J, Bustin R M, Chikatamarla L. Adsorption-induced coal swelling and stress:Implications for methane production and acid gas sequestration into coal seams[J]. Journal of Geophysical Research:Solid Earth, 2007, 112(B10):1-16. [40] Levine J R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs[J]. Geological Society, London, Special Publications, 1996, 109(1):197-212. [41] Hol S, Spiers C J. Competition between adsorption-induced swelling and elastic compression of coal at CO2 pressures up to 100MPa[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(11):1862-1882. [42] Sakurovs R. Relationships between CO2 sorption capacity by coals as measured at low and high pressure and their swelling[J]. International Journal of Coal Geology, 2012, 90:156-161. [43] Briggs H, Sinha R P. Expansion and contraction of coal caused respectively by the sorption and discharge of gas[J]. Proceedings of the Royal Society of Edinburgh, 1933, 53:48-53. [44] Day S, Fry R, Sakurovs R, et al. Swelling of coals by supercritical gases and its relationship to sorption[J]. Energy & Fuels, 2010, 24(4):2777-2783. [45] Staib G, Sakurovs R, Gray E M. Kinetics of coal swelling in gases:Influence of gas pressure, gas type and coal type[J]. International Journal of Coal Geology, 2014, 132:117-122. [46] Majewska Z, Majewski S, Zietek J. Swelling of coal induced by cyclic sorption/desorption of gas:Experimental observations indicating changes in coal structure due to sorption of CO2 and CH4[J]. International Journal of Coal Geology, 2010, 83(4):475-483. [47] Yu J L, Strezov V, Lucas J, et al. Swelling behaviour of individual coal particles in the single particle reactor[J]. Fuel, 2003, 82(15-17):1977-1987. [48] Reucroft P J, Sethuraman A R. Effect of pressure on carbon dioxide induced coal swelling[J]. Energy & Fuels, 1987, 1(1):72-75. [49] van Bergen F, Spiers C, Floor G, et al. Strain development in unconfined coals exposed to CO2, CH4 and Ar:Effect of moisture[J]. International Journal of Coal Geology, 2009, 77(1):43-53. [50] Day S, Fry R, Sakurovs R. Swelling of moist coal in carbon dioxide and methane[J]. International Journal of Coal Geology, 2011, 86(2-3):197-203. [51] Zarębska K, Ceglarska-Stefańska G. The change in effective stress associated with swelling during carbon dioxide sequestration on natural gas recovery[J]. International Journal of Coal Geology, 2008, 74(3-4):167-174. [52] Day S, Fry R, Sakurovs R. Swelling of coal in carbon dioxide, methane and their mixtures[J]. International Journal of Coal Geology, 2012, 93:40-48. [53] Zhang D F, Gu L L, Li S G, et al. Interactions of supercritical CO2 with coal[J]. Energy & Fuels, 2013, 27(1):387-393. [54] Busch A, Gensterblum Y, Krooss B M. Methane and CO2 sorption and desorption measurements on dry Argonne premium coals:Pure components and mixtures[J]. International Journal of Coal Geology, 2003, 55(2-4):205-224. [55] Ceglarska-Stefańska G, Czapliński A. Correlation between sorption and dilatometric processes in hard coals[J]. Fuel, 1993, 72(3):413-417. [56] Wang J G, Liu J, Kabir A. Combined effects of directional compaction, non-Darcy flow and anisotropic swelling on coal seam gas extraction[J]. International Journal of Coal Geology, 2013, 109-110:1-14. [57] Karacan C Ö. Heterogeneous sorption and swelling in a confined and stressed coal during CO2 injection[J]. Energy & Fuels, 2003, 17(6):1595-1608. [58] Wong S, Law D, Deng X H, et al. Enhanced coalbed methane and CO2 storage in anthracitic coals-micro-pilot test at South Qinshui, Shanxi, China[J]. International Journal of Greenhouse Gas Control, 2007, 1(2):215-222. [59] Siriwardane H, Haljasmaa I, McLendon R, et al. Influence of carbon dioxide on coal permeability determined by pressure transient methods[J]. International Journal of Coal Geology, 2009, 77(1-2):109-118. [60] Fang Z M, Li X C. Experimental study of gas adsorption-induced coal swelling and its influence on permeability[J]. Disaster Advances, 2012, 5(4):769-773. [61] Soule A D, Smith C A, Yang X, et al. Adsorption modeling with the ESD equation of state[J]. Langmuir, 2001, 17(10):2950-2957. [62] Fitzgerald J E, Sudibandriyo M, Pan Z, et al. Modeling the adsorption of pure gases on coals with the SLD model[J]. Carbon, 2003, 41(12):2203-2216. [63] Harpalani S, Prusty B K, Dutta P. Methane/CO2 sorption modeling for coalbed methane production and CO2 sequestration[J]. Energy & Fuels, 2006, 20(4):1591-1599. [64] Pekot L J, Reeves S R. Modeling coal matrix shrinkage and differential swelling with CO2 injection for enhanced coalbed methane recovery and carbon sequestration applications[R]. Advanced Resources International, Incorporated, 2002. [65] Palmer I, Mansoori J. How permeability depends on stress and pore pressure in coalbeds:A new model[C]//SPE Annual Technical Conference and Exhibition. 1996. [66] Pan Z J, Connell L D. A theoretical model for gas adsorption-induced coal swelling[J]. International Journal of Coal Geology, 2007, 69(4):243-252. [67] Chen G Q, Yang J L, Liu Z Y. Method for simultaneous measure of sorption and swelling of the block coal under high gas pressure[J]. Energy & Fuels, 2012, 26(7):4583-4589. [68] Harpalani S, Chen G. Estimation of changes in fracture porosity of coal with gas emission[J]. Fuel, 1995, 74(10):1491-1498. [69] St. George J D, Barakat M A. The change in effective stress associated with shrinkage from gas desorption in coal[J]. International Journal of Coal Geology, 2001, 45(2-3):105-113. [70] Wang G G X, Zhang X D, Wei X R, et al. A review on transport of coal seam gas and its impact on coalbed methane recovery[J]. Frontiers of Chemical Science and Engineering, 2011, 5(2):139-161. [71] 段利江, 唐书恒, 夏朝辉, 等. 煤吸附气体诱导的基质膨胀研究进展[J]. 地球科学进展, 2012, 27(3):262-267. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[3] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[4] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[5] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[8] | LYU Chao, ZHANG Xiwen, JIN Lijian, YANG Linjun. Efficient capture of CO2 by a new biphasic solvent-ionic liquid system [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3226-3232. |
[9] | WANG Keju, ZHAO Cheng, HU Xiaomei, YUN Junge, WEI Ninghan, JIANG Xueying, ZOU Yun, CHEN Zhihang. Research progress of low temperature catalytic oxidation of VOCs by metal oxides [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. |
[10] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[11] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[12] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[13] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
[14] | WANG Qiuhua, WU Jiashuai, ZHANG Weifeng. Research progress of alkaline industrial solid wastes mineralization for carbon dioxide sequestration [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1572-1582. |
[15] | WANG Xiaoyue, ZHANG Weimin, YAO Zhengyang, GUO Xiaohong, LI Congming. Research progress of reverse water gas shift reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1583-1594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |