[1] 罗佐县.美国页岩气勘探开发现状及其影响[J].中外能源, 2012(1): 23-28.[2] Reed T B, Gaur S.A survey of biomass gasification 2001[M]. National Renewable Energy Laboratory and Biomass Energy Foundation, 2001.[3] 江涛, 陈诗诗, 曹发海.生物质多元醇水相重整制氢研究进展[J].化工进展, 2012, 31(5): 1010-1017.[4] Rosen M A.Thermodynamic investigation of hydrogen production by steam-methane reforming [J].International Journal of Hydrogen Energy, 1991, 16(3): 207-217.[5] Wang X, Li M, Wang M, et al.Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production [J].Fuel, 2009, 88(11): 2148-2153.[6] Wilhelm D J, Simbeck D R, Karp A D, et al.Syngas production for gas-to-liquids applications: Technologies, issues and outlook [J].Fuel Processing Technology, 2001, 71(1-3): 139-148.[7] Rostrup-Nielsen J R.Industrial relevance of coking [J].Catalysis Today, 1997, 37(3): 225-232.[8] Singh D, Hernández-Pacheco E, Hutton P N, et al.Carbon deposition in an SOFC fueled by tar-laden biomass gas: A thermodynamic analysis [J].Journal of Power Sources, 2005, 142(1): 194-199.[9] Pelton A D, Bale C W, Lin P L.Calculation of thermodynamic equilibria in the carbonate fuel cell [J].Project CDT, 1981(1):501.[10] Bartholomew C H.Carbon deposition in steam reforming and methanation [J].Catalysis Reviews Science and Engineering, 1982, 24(1): 67-112.[11] Jones G, Jakobsen J G, Shim S S, et al.First principles calculations and experimental insight into methane steam reforming over transition metal catalysts [J].Journal of Catalysis, 2008, 259(1): 147-160.[12] Trimm D.Catalysts for the control of coking during steam reforming [J].Catalysis Today, 1999, 49(1): 3-10.[13] 姚露,胡常伟.二氧化碳重整甲烷反应镍基催化剂积碳与消碳研究[EB/OL].北京:中国科技论文在线[2013-03-18]. http:www.paper.edu.cn/releasepaper/content/2013-348.[14] Chen P, Zhang H-B, Lin G-D, et al.Development of coking-resistant Ni-based catalyst for partial oxidation and CO2-reforming of methane to syngas [J].Applied Catalysis A: General, 1998, 166(2): 343-350.[15] Cairns E, Tevebaugh A.CHO Gas phase compositions in equilibrium with carbon, and carbon deposition boundaries at one atmosphere [J].Journal of Chemical & Engineering Data, 1964, 9(3): 453-462.[16] Melançon J, Bale C W.Gaseous equilibria in the CHO ternary system at 500—2000K, 0.1—10atm [J].Oxidation of Metals, 1982, 18(3-4): 147-162.[17] Sasaki K, Teraoka Y.Equilibria in fuel cell gases I. Equilibrium compositions and reforming conditions [J].Journal of The Electrochemical Society, 2003, 150(7): A878-A884.[18] Sasaki K, Teraoka Y.Equilibria in fuel cell gases II.The CHO ternary diagrams [J].Journal of The Electrochemical Society, 2003, 150(7): A885-A888.[19] 姜洪涛, 李会泉, 张懿.甲烷三重整制合成气 [J].化学进展, 2006(10): 1270-1277.[20] 孙迎.甲烷联合重整三重整制合成气的热力学分析 [D].太原:太原理工大学, 2007.[21] 唐强, 阳绪东, 张力.甲烷三重整制合成气热力学分析 [J].热能动力工程, 2012(3): 296-300.[22] 孙杰, 孙春文, 李吉刚, 等.甲烷水蒸气重整反应研究进展 [J].中国工程科学, 2013(2): 98-106.[23] 孙道安, 李春迎, 张伟, 等.典型碳氢化合物水蒸气重整制氢研究进展[J].化工进展, 2012,31(4): 801-806.[24] 高志博, 王晓波, 刘金明, 等.甲烷水蒸气重整制合成气的研究进展 [J].高师理科学刊, 2012(2): 79-81,9.[25] Hou K H, Hughes R.The kinetics of methane steam reforming over a Ni/alpha-Al2O3 catalyst [J].Chem.Eng.J., 2001, 82(1-3): 311-328.[26] Bradford M C, Vannice M A.Catalytic reforming of methane with carbon dioxide over nickel catalysts I.Catalyst characterization and activity [J].Applied Catalysis A: General, 1996, 142(1): 73-96.[27] Bradford M C J, Vannice M A.Catalytic reforming of methane with carbon dioxide over nickel catalysts II.Reaction kinetics [J].Applied Catalysis A: General, 1996, 142(1): 97-122.[28] Li Y H, Wang Y, Zhang X, et al.Thermodynamic analysis of autothermal steam and CO< sub> 2 reforming of methane [J].International Journal of Hydrogen Energy, 2008, 33(10): 2507-14.[29] Jarungthammachote S.Combined partial oxidation and carbon dioxide reforming process: A thermodynamic study [J]. American Journal of Applied Sciences, 2011, 8(1): 9.[30] Nikoo M K, Amin N A S.Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation [J].Fuel Processing Technology, 2011, 92(3): 678-691.[31] 李航, 殷洁炜, 王幸宜,等.甲烷部分氧化制合成气催化剂的研究进展 [J].广州化工, 2011(15): 4-6,36.[32] Pan W, Song C.Computational analysis of energy aspects of CO2 reforming and oxy-CO2 reforming of methane at different pressures [J].Am.Chem.Soc.,2000,45(1):168-171.[33] Prins M J, Ptasinski K J, Janssen F JJG.Thermodynamics of gas-char reactions: First and second law analysis [J]. Chemical Engineering Science, 2003, 58(3): 1003-1011.[34] Ge X-M, Chan S-H, Liu Q-L, et al.Solid oxide fuel cell anode materials for direct hydrocarbon utilization [J]. Advanced Energy Materials, 2012, 2(10): 1156-1181.[35] Sangtongkitcharoen W, Assabumrungrat S, Pavarajarn V, et al.Comparison of carbon formation boundary in different modes of solid oxide fuel cells fueled by methane [J].Journal of Power sources, 2005, 142(1): 75-80.[36] Finnerty C M, Coe N J, Cunningham R H, et al.Carbon formation on and deactivation of nickel-based/zirconia anodes in solid oxide fuel cells running on methane [J].Catalysis Today, 1998, 46(2): 137-145.[37] Takeguchi T, Kani Y, Yano T, et al.Study on steam reforming of CH4 and C2 hydrocarbons and carbon deposition on Ni-YSZ cermets [J]. Journal of Power Sources, 2002, 112(2): 588-595.[38] Guo X, Fang G, Li G, et al.Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen [J].Science, 2014, 344(6184): 616-619.[39] Li Y, Armor J N.Selective reduction of NOx by methane on Co-ferrierites.Part 1.reaction and kinetic studies[J]. Journal of Catalysis, 1994, 150(2):376-387.[40] 王雷, 沈本贤, 程晓光, 等.乙炔氢氯化反应体系热力学分析 [J].化工进展, 2014, 33(3): 573-576. |