[1] LEWIS N S, NOCERA D G.Powering the planet: chemical challenges in solar energy utilization[J].Proceedings of the National Academy of Sciences, 2006, 103(43): 15729-15735. [2] LEWIS N S.Toward cost-effective solar energy use[J].Science, 2007, 315(5813): 798-801. [3] WALTER M G, WARREN E L, MCKONE J R, et al. Solar water splitting cells[J].Chemical Reviews, 2010, 110(11): 6446-6473. [4] LIANG Y, LI Y, WANG H, et al.Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis[J].Journal of the American Chemical Society, 2013, 135(6): 2013-2036. [5] SMITH R D L, PRÉVOT M S, FAGAN R D, et al.Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis[J].Science, 2013, 340(6128): 60-63. [6] BETLEY T A, WU Q, VAN VOORHIS T, et al.Electronic design criteria for O-O bond formation via metal-Oxo complexes[J].Inorganic Chemistry, 2008, 47(6): 1849-1861. [7] CUKIER R I, NOCERA D G.Proton-coupled electron transfer[J].Annual Review of Physical Chemistry, 1998, 49(1): 337-369. [8] HUYNH M H V, MEYER T J.Proton-coupled electron transfer[J].Chemical Reviews, 2007, 107(11): 5004-5064. [9] LEE S W, CARLTON C, RISCH M, et al.The nature of lithium battery materials under oxygen evolution reaction conditions[J].Journal of the American Chemical Society, 2012, 134(41): 16959-16962. [10] KANAN M W, NOCERA D G.In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+[J].Science, 2008, 321(5892): 1072-1075. [11] DINCĂ M, SURENDRANATH Y, NOCERA D G.Nickel-borate oxygen-evolving catalyst that functions under benign conditions[J].Proceedings of the National Academy of Sciences, 2010, 107(23): 10337-10341. [12] 王维, 赵强, 董晋湘, 等.原位电解合成 Ni-B析氧催化剂及其性能研究[J].太阳能学报, 2011, 32(6): 947-950. [13] RISCH M, KLINGAN K, HEIDKAMP J, et al.Nickel-oxido structure of a water-oxidizing catalyst film[J]. Chemical Communications, 2011, 47: 11912-11914. [14] BEDIAKO D K, LASSALLE-KAISEr B, SURENDRANATH Y, et al.Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J].Journal of the American Chemical Society, 2012, 134(15): 6801-6809. [15] WIECHEN M, BERENDS H-M, KURZ P.Water oxidation catalysed by manganese compounds: from complexes to ‘biomimetic rocks' [J].Dalton Transactions, 2012, 41: 21-31. [16] WANG W, ZHAO Q, DONG J, et al.A novel silver oxides oxygen evolving catalyst for water splitting[J].International Journal of Hydrogen Energy, 2011, 36: 7374-7380. [17] ZHAO Q, YU Z, YUAN W, et al. A WO3/Ag-Bi oxygen-evolution catalyst for splitting water under mild conditions[J].International Journal of Hydrogen Energy, 2012, 37: 13249-13255. [18] CHEN Z, MEYER T J.Copper(II) catalysis of water oxidation[J].Angewandte Chemie, 2013, 125: 728-731. [19] DU J, CHEN Z, YE S, et al.Copper as a robust and transparent electrocatalyst for water oxidation[J].Angewandte Chemie, 2015, 54: 2073-2078. [20] ZHAO Q, HAO G, YUAN W, et al.Novel copper oxides oxygen evolving catalyst in situ for electrocatalytic water splitting[J].Electrochimica Acta, 2015, 152: 280-285. [21] WU Y.CHEN M, HAN Y, et al.Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution[J].Angewandte Chemie, 2015, 54: 4870-4875. [22] FABBRI E, HABEREDER A, WALTAR K, et al.Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J].Catalysis Science & Technology, 2014, 4: 3800-3821. [23] ZHAO Q, YU Z, YUAN W, et al.Metal-Ci oxygen-evolving catalysts generatedin situ in a mild H2O/CO2 environment[J].International Journal of Hydrogen Energy, 2013, 38: 5251-5258. [24] ZHAO Q, YU Z, YUAN W, et al.Modulated crystalline Ag-Ci oxygen-evolving catalysts for electrocatalytic water oxidation[J].International Journal of Hydrogen Energy, 2014, 39: 1364-1370. [25] TORELLI D A, HARRISON D P, LAPIDES A M, et al.Strategies for stabilization of electrodeposited metal particles in electropolymerized films for H2O oxidation and H+ reduction[J]. ACS Applied Materials & Interfaces, 2013, 5: 7050-7057. [26] COOK T R, DOGUTAN D K, REECE S Y, et al.Solar energy supply and storage for the legacy and nonlegacy worlds[J].Chemical Reviews, 2010, 110(11): 6474-6502 . [27] MARSHALL A T, HAVERKAMP R G.Electrocatalytic activity of IrO2-RuO2 supported on Sb-doped SnO2 nanoparticles [J].Electrochimica Acta, 2010, 55(6): 1978-1984. [28] LOUIE M W, BELL A T.An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen[J].Journal of the American Chemical Society, 2013, 135(33): 12329-12337. [29] SMITH R D L, PRÉVOT M S, FAGAN R D, et al.Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel[J].Journal of the American Chemical Society, 2013, 135(31): 11580-11586. [30] RAJ V, BALAJI P, JOSHI M, et al.Ag grafted ZnO nanoplates for photocatalytic applications[J].Materials Focus, 2014, 3: 385-391. [31] XIE J, WU Q.One-pot synthesis of ZnO/Ag nanospheres with enhanced photocatalytic activity[J].Materials Letters, 2010, 64: 389-392. [32] YIN X, QUE W, FEI D, et al.Ag nanoparticle/ZnO nanorods nanocomposites derived by a seed-mediated method and their photocatalytic properties[J].Journal of Alloys and Compounds, 2012, 524: 13-21. [33] LIN D, WU H, ZHANG R, et al.Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers[J].Chemistry of Materials, 2009, 21(15): 3479-3484. [34] HUANG X, XIE M, CHEN Y, et al.Copper-silver oxide nanowires grown on an alloy electrode as an efficient electrocatalyst for water oxidation[J].RSC Advances, 2015, 5: 26150-26156. [35] 王保伟, 孙启梅.石墨烯在光催化水解制氢中的应用[J].化工进展, 2012, 31(10): 2245-2251. [36] ZHANG H, LV X, LI Y, et al. P25-graphene composite as a high performance photocatalyst[J].ACS Nano, 2010, 4: 380-386. [37] ZHANG Y, TANG Z-R, FU X, et al.TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2-carbon composite materials?[J].ACS Nano, 2010, 4(12): 7303-7314. [38] UPADHYAY S, BAGHERI S, ABD HAMID S B.Enhanced photoelectrochemical response of reduced-graphene oxide/Zn1-xAgxO nanocomposite in visible-light region[J].International Journal of Hydrogen Energy, 2014, 39: 11027-11034. [39] GALLARDO O A D, MOIRAGHI R, MACCHIONE M A, et al. Silver oxide particles/silver nanoparticles interconversion: susceptibility of forward/backward reactions to the chemical environment at room temperature[J].RSC Advances, 2012, 2(7): 2923-2929. [40] KIM M J, CHO Y S, PARK S H, et al.Facile synthesis and fine morphological tuning of Ag2O[J].Crystal Growth & Design, 2012, 12(8): 4180-4185. [41] LYU L M, WANG W C, HUANG M H.Synthesis of Ag2O nanocrystals with systematic shape evolution from cubic to hexapod structures and their surface properties[J].Chemistry, 2010, 16(47): 14167-14174. [42] BOOPATHI S, GOPINATH S, BOOPATHI T, et al.Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated pseudomonas aeruginosa M6 using two different thermal treatments[J].Industrial & Engineering Chemistry Research, 2012, 51(17): 5976-5985. [43] IVANOVA O S, ZAMBORINI F P.Size-dependent electrochemical oxidation of silver nanoparticles[J]. Journal of the American Chemical Society, 2009, 132(1): 70-72. [44] CLOUD J E, TAYLOR L W, YANG YG.A simple and effective method for controllable synthesis of silver and silver oxide nanocrystals[J].RSC Advances, 2014, 4(47): 24551-24559. |