Chemical Industry and Engineering Progree ›› 2016, Vol. 35 ›› Issue (06): 1794-1803.DOI: 10.16085/j.issn.1000-6613.2016.06.020
• Material science and technology • Previous Articles Next Articles
LI Libo, WANG Yong, WANG Xiaoqing, CHEN Yang, YANG Jiangfeng, LI Jinping
Received:2016-01-12
Revised:2016-02-03
Online:2016-06-05
Published:2016-06-05
李立博, 王勇, 王小青, 陈杨, 杨江峰, 李晋平
通讯作者:
李晋平,教授,博士生导师,从事气体能源高效利用的研究。E-mail:jpli211@hotmail.com。
作者简介:李立博(1986-),男,博士,讲师,从事新型多孔材料应用于气体吸附分离的研究。
基金资助:CLC Number:
LI Libo, WANG Yong, WANG Xiaoqing, CHEN Yang, YANG Jiangfeng, LI Jinping. Selective gas adsorption and separation in flexible metal-organic frameworks[J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1794-1803.
李立博, 王勇, 王小青, 陈杨, 杨江峰, 李晋平 . 柔性金属有机骨架材料(MOFs)用于气体吸附分离[J]. 化工进展, 2016, 35(06): 1794-1803.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016.06.020
| [1] LI J R,SCULLEY J,ZHOU H C,et al. Metal-organic frameworks for separations[J]. Chem. Rev.,2012,112(2):869-932. [2] FURUKAWA H,CORDOVA K E,KEEFFE M O',et al. The chemistry and applications of metal-organic frameworks[J]. Science,2013,341(6149):974. [3] SLATER A G,COOPER A I. Function led design of new porous materials[J]. Science,2015,348(6238):988. [4] LI M,LI D,KEEFFE M O' ,et al. Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle[J]. Chem. Rev.,2014,114(2):1343-1370. [5] KITAGAWA S,KITAURA R,NORO S I. Functional porous coordination polymers[J]. Angew. Chem. Int. Ed.,2004,43:2334-2375. [6] HORIKE S,SHIMOMURA S,KITAGAWA S. Soft porous crystals[J]. Nat. Chem.,2009,1:695-704. [7] SAKATA Y,FURUKAWA S,KITAGAWA S. Shape-memory nanopores induced in coordination frameworks by crystal downsizing[J]. Science,2013,339(6116):193-196. [8] SCHNEEMANN A,BON V,SCHWEDLER I,et al. Flexible metal-organic frameworks[J]. Chem. Soc. Rev.,2015,43(16):6062-6096. [9] KRENO L E,LEONG K,FARHA O K,et al. Metal-organic framework materials as chemical sensors[J]. Chem. Rev.,2012,112:1105-1125. [10] LI L B,WANG Y,YANG J F,et al. Targeted capture and pressure/temperature-responsive separation in flexible metal-organic frameworks[J]. J. Mater. Chem. A,2015,3:22574-22583. [11] LOISEAU T,SERRE C,HUGUENARD C,et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chem. Eur. J.,2004,10:1373-1382. [12] MILLANGE F,GUILLOU N,WALTON R I,et al. Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks[J]. Chem. Commun.,2008(39):4732-4734. [13] MILLANGE F,SERRE C,FÉREY G. Synthesis,structure determination and properties of MIL-53as and MIL-53ht:the first CrIII hybrid inorganic-organic microporous solid:CrIII(OH)·{O2C—C6H4—CO2}·{HO2C—C6H4—CO2H}x[J]. Chem. Commun.,2002(8):822-823. [14] SERRE C,MILLANGE F,THOUVENOT C,et al. Very large breathing effect in the first nanoporous chromium(III)-based solids:MIL-53 or CrIII(OH)·{O2C—C6H4—CO2}·{HO2C-C6H4-CO2H}x H2Oy[J]. J. Am. Chem. Soc.,2002,124(45):13519-13526. [15] MOWAT J P S,SEYMOUR V R,GRIFFIN J M,et al. A novel structural form of MIL-53 observed for the scandium analogue and its response to temperature variation and CO2 adsorption[J]. Dalton Trans.,2012,41:3937-3941. [16] VOLKRINGER C,LOISEAU T,GUILLOU N,et al. XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga)[J]. Dalton Trans.,2009(12):2241-2249. [17] ANOKHINA E V,VOUGO-ZANDA M,WANG X,et al. In(OH)BDC·0.75BDCH2, a hybrid inorganic-organic vernier structure[J]. J. Am. Chem. Soc.,2005,127(43):15000-15001. [18] BOUSQUET D,COUDERT F X,FOSSATI A G J,et al. Adsorption induced transitions in soft porous crystals:an osmotic potential approach to multistability and intermediate structures[J]. J. Chem. Phys.,2013,138:174706. [19] COUDERT F X,BOUTIN A,FUCHS A H,et al. Adsorption deformation and structural transitions in metal-organic frameworks: from the unit cell to the crystal[J]. J. Phys. Chem. Lett.,2013,4(19):3198-3205. [20] MELLOT-DRAZNIEKS C,SERRE C,SURBLE S,et al. Very large swelling in hybrid frameworks:a combined computational and powder diffraction study[J]. J. Am. Chem. Soc.,2005,127(46):16273-16278. [21] SURBLE S,SERRE C,MELLOT-DRAZNIEKS C,et al. A new isoreticular class of metal-organic-frameworks with the MIL-88 topology[J]. Chem. Commun.,2006(3):284-286. [22] SEO J,MATSUDA R,SAKAMOTO H,et al. A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules[J]. J. Am. Chem. Soc.,2009,131(35):12792-12800. [23] KONDO A,NOGUCHI H,OHNISHI S,et al. Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO2 molecules[J]. Nano Letter,2006,6(11):2581-2584. [24] SERVICE R F. Stepping on the gas[J]. Science,2014,346(6209):538-541. [25] YEH S. An empirical analysis on the adoption of alternative fuel vehicles: the case of natural gas vehicles[J]. Energy Policy,2007,35(11):5865-5875. [26] WHYATT G A. Issues Affecting adoption of natural gas fuel in light- and heavy-duty vehicles[R]. No. PNNL-19745,US Department of Energy,2010. [27] WEGRZYN J,GUREVICH M. Adsorbent storage of natural gas[J]. Appl. Energy,1996,55(2):71-83. [28] MAKAL T A,LI J R,LU W,et al. Methane storage in advanced porous materials[J]. Chem. Soc. Rev.,2012,41:7761-7779. [29] HE Y B,ZHOU W,QIAN G D,et al. Methane storage in metal-organic frameworks[J]. Chem. Soc. Rev.,2014,43:5657-5678. [30] PENG Y,KRUNGLEVICIUTE V,ERYAZICI I,et al. Methane storage in metal-organic frameworks:current records,surprise findings,and challenges[J]. J. Am. Chem. Soc.,2013,135(32):11887-11894. [31] MASON J A,VEENSTRA M,LONG J R. Evaluating metal-organic frameworks for natural gas storage[J]. Chem. Sci.,2014,5:32-51. [32] MASON J A,OKTAWIEC J,TAYLOR M K,et al. Methane storage in flexible metal-organic frameworks with intrinsic thermal management[J]. Nature,2015,527:357-361. [33] INUBUSHI Y,HORIKE S,FUKUSHIMA T,et al. Modification of flexible part in Cu2+ interdigitated framework for CH4/CO2 separation[J]. Chem. Commun.,2010,46:9229-9231. [34] CHEN B L,MA S,ZAPATA F,et al. Rationally designed micropores within a metal-organic framework for selective sorption of gas molecules[J]. Inorg. Chem.,2007,46(4):1233-1236. [35] TRUNG T K,TRENS P,TANCHOUX N,et al. Hydrocarbon adsorption in the flexible metal organic frameworks MIL-53(Al,Cr)[J]. J. Am. Chem. Soc.,2008,130(50):16926-16932. [36] HE Y B,XIANG S,CHEN B L. A microporous hydrogen-bonded organic framework for highly selective C2H2/C2H4 separation at ambient temperature[J]. J. Am. Chem. Soc.,2011,133(37):14570-14573. [37] MATSUDA R,KITAURA R,KITAGAWA S,et al. Highly controlled acetylene accommodation in a metal-organic microporous material[J]. Nature,2005,436:238-241. [38] BERGH J van den,GUCUYENER C,PIDKO E A,et al. Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures[J]. Chem. Eur. J.,2011,17(32):8832-8840. [39] RABONE J,YUE Y F,CHONG S Y,et al. An adaptable peptide-based porous material[J]. Science,2010,329:1053-1057. [40] MAES M,SCHOUTEDEN S,HIRAI K,et al. Liquid phase separation of polyaromatics on [Cu2(BDC)2(dabco)][J]. Langmuir,2011,27(15):9083-9087. [41] MAJI T K,MOSTAFA G,MATSUDA R,et al. Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation[J]. J. Am. Chem. Soc.,2005,127(49):17152-17153. [42] LI J R,SCULLEY J,ZHOU H C. Metal-organic frameworks for separations[J]. Chem. Rev.,2012,112:869-932. [43] LI L B,YANG J F,ZHAO Q,et al. One-dimensional interpenetrated coordination polymers showing step gas sorption properties[J]. CrystEngComm.,2013,15:1689-1692. [44] SATO H,KOSAKA W,MATSUDA R,et al. Self-accelerating CO sorption in a soft nanoporous crystal[J]. Science,2014,343:167-170. [45] HIJIKATA Y,HORIKE S,Sugimoto M,et al. Pore design of two-dimensional coordination polymers toward selective adsorption[J]. Inorg. Chem.,2013,52(7):3634-3642. [46] NORO S I,HIJIKATA Y,INUKAI M,et al. Highly selective CO2 adsorption accompanied with low-energy regeneration in a two-dimensional Cu(II) porous coordination polymer with inorganic fluorinated PF6– anions[J]. Inorg. Chem.,2012,52(1):280-285. [47] INUBUSHI Y,HORIKE S,FUKUSHIMA T,et al. Modification of flexible part in Cu2+ interdigitated framework for CH4/CO2 separation[J]. Chem. Commun.,2010,46:9229-9231. [48] GOMEZ L F,ZACHARIA R,BÉNARD P,et al. Simulation of binary CO2/CH4 mixture breakthrough profiles in MIL-53 (Al)[J]. J. Nanomater.,2015:439382. DOI:10.1155/2015/439382. [49] COUCK S,DENAYER J F M,BARON G V,et al. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4[J]. J. Am. Chem. Soc.,2009,131(18):6326-6327. [50] SRINIVAS G,TRAVIS W,FORD J,et al. Nanoconfined ammonia borane in a flexible metal-organic framework Fe–MIL-53: clean hydrogen release with fast kinetics[J]. J. Mater. Chem. A,2013,1:4167-4172. [51] MA Q,YANG Q,GHOU A,et al. Guest-modulation of the mechanical properties of flexible porous metal-organic frameworks[J]. J. Mater. Chem. A,2014,2:9691-9698. [52] LI L B,WANG Y,YANG J F,et al. Targeted capture and pressure/temperature-responsive separation in flexible metal-organic frameworks[J]. J. Mater. Chem. A,2015,3:22574-22583. [53] BLOCH E D,QUEEN W L,KRISHNA R,et al. Hydrocarbon separations in a metal-organic framework with open iron(II) coordination sites[J]. Science,2012,335(6076):1606-1610. [54] LOU W L,YANG J F,LI L B,et al. Adsorption and separation of CO2 on Fe(II)-MOF-74: effect of the open metal coordination site[J]. J. Solid State Chem.,2014,213:224-228. [55] HE Y B,ZHOU W,KRISHNA R,et al. Microporous metal-organic frameworks for storage and separation of small hydrocarbons[J]. Chem. Commun.,2012,48:11813-11831. [56] HE Y B,KRISHNA R,CHEN B L. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons[J]. Energy Environ. Sci.,2012,5:9107-9120. [57] BAE Y,LEE C Y,KIM K C,et al. High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites[J]. Angew. Chem. Int. Ed.,2012,51(8):1857-1860. [58] LI L B,KRISHNA R,WANG Y,et al. Exploiting the gate opening effect in a flexible MOF for selective adsorption of propyne from C1/C2/C3 hydrocarbons[J]. J. Mater. Chem. A,2016,4:751-755. [59] OBENHAUS F,DROSTE W,NEUMEISTER J B. Ullman's encyclopedia of industrial chemistry; electronic release[M]. Weinheim:Wiley-VCH,2012. [60] BERGH J van den,GUCUYENER C,PIDKO E A,et al. Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures[J]. Chem. Eur. J.,2011,17:8832-8840. [61] PAN L,OLSON D H,CIEMNOLONSKI L R,et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. Angew. Chem. Int. Ed.,2006,45(4):616-635. [62] ALAERTS L,MAES M,VEEN van der,et al. Metal-organic frameworks as high-potential adsorbents for liquid-phase separations of olefins,alkylnaphthalenes and dichlorobenzenes[J]. Phys. Chem. Chem. Phys.,2009,11:2903-2911. [63] MENDES P A P,HORCAJADA P,RIVES S,et al. A complete separation of hexane isomers by a functionalized flexible metal organic framework[J]. Adv. Funct. Mater.,2014,24:7666-7673. [64] BAREA E,MONTORO C,NAVARRO J A R. Toxic gas removal—metal-organic frameworks[J]. Chem. Soc. Rev.,2014,43:5419-4530. [65] YANAI N,UEMURA T,INOUE M,et al. Guest-to-host transmission of structural changes for stimuli-responsive adsorption property[J]. J. Am. Chem. Soc.,2012,134(10):4501-4504. [66] YANAI N,KITAYAMA K,HIJIKATA Y,et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer[J]. Nature Mater.,2011,10:787- 793. [67] CHEN Y,LI L B,YANG J Y,et al. Reversible flexible structural changes in multidimensional MOFs by guest molecules (I2,NH3) and thermal stimulation[J]. J. Solid State Chem.,2015,226:114-119. [68] LI L B,WANG Y,YANG J F,et al. Functionalized metal-organic frameworks for the efficient removal of low concentrations of ammonia[J]. ChemPlusChem.,2016,81(2):222-228. |
| [1] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
| [2] | HE Meijin. Application and development trend of molecular management in separation technology in petrochemical field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 260-266. |
| [3] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
| [4] | CUI Shoucheng, XU Hongbo, PENG Nan. Simulation analysis of two MOFs materials for O2/He adsorption separation [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 382-390. |
| [5] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
| [6] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
| [7] | LI Shilin, HU Jingze, WANG Yilin, WANG Qingji, SHAO Lei. Research progress in separation and extraction of high value components by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 420-429. |
| [8] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
| [9] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
| [10] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
| [11] | LIAO Zhixin, LUO Tao, WANG Hong, KONG Jiajun, SHEN Haiping, GUAN Cuishi, WANG Cuihong, SHE Yucheng. Application and progress of solvent deasphalting technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4573-4586. |
| [12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
| [13] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
| [14] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
| [15] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |