Chemical Industry and Engineering Progree ›› 2016, Vol. 35 ›› Issue (10): 3005-3015.DOI: 10.16085/j.issn.1000-6613.2016.11.001
• Invited reviews • Previous Articles Next Articles
ZHOU Jinjie, WANG Xudong, SUN Yaqin, XIU Zhilong
Received:
2016-01-29
Revised:
2016-03-09
Online:
2016-10-05
Published:
2016-10-05
周瑾洁, 王旭东, 孙亚琴, 修志龙
通讯作者:
修志龙,教授,主要从事生物基化学品发酵及分离研究。E-mail:zhlxiu@dlut.edu.cn
作者简介:
周瑾洁(1991-),女,博士研究生。
基金资助:
CLC Number:
ZHOU Jinjie, WANG Xudong, SUN Yaqin, XIU Zhilong. Progress on microbial electrosynthesis of bio-based chemicals[J]. Chemical Industry and Engineering Progree, 2016, 35(10): 3005-3015.
周瑾洁, 王旭东, 孙亚琴, 修志龙. 生物基化学品的微生物电合成研究进展[J]. 化工进展, 2016, 35(10): 3005-3015.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016.11.001
[1] PEL H J,DE WINDE J H,ARCHER D B,et al.Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88[J].Nat.Biotechnol.,2007,25(2):221-231. [2] 秦义,董志姚,刘立明,等.工业微生物中NADH的代谢调控[J].生物工程学报,2009,25(2):161-169. [3] RABAEY K,ROZENDAL R A.Microbial electrosynthesis——revisiting the electrical route for microbial production[J].Nat.Rev.Microbiol.,2010,8(10):706-716. [4] PANT D,SINGH A,VAN BOGAERT G,et al.Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters[J].RSC Adv.,2012,2(4):1248-1263. [5] HONGO M,IWAHARA M.Application of electro-energizing method to L-glutamic acid fermentation[J].Agricultural and Biological Chemistry,1979,43(10):2075-2081. [6] HONGO M,NOMURA Y,IWAHARA M.Novel method of lactic acid production by electrodialysis fermentation[J].Applied and Environmental Microbiology,1986,52(2):314-319. [7] SCHUPPERT B,SCHINK B,TRÖSCH W.Batch and continuous production of propionic acid from whey permeate by propionibacterium acidi-propionici in a three-electrode amperometric culture system[J].Applied Microbiology and Biotechnology,1992,37(5):549-553. [8] KIM T S,KIM B H.Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent[J].Biotechnology Letters,1988,10(2):123-128. [9] PARK D H,ZEIKUS J G.Utilization of electrically reduced neutral red by Actinobacillus succinogenes:physiological function of neutral red in membrane-driven fumarate reduction and energy conservation[J].Journal of Bacteriology,1999,181(8):2403-2410. [10] MARSILI E,ROLLEFSON J B,BARON D B,et al.Microbial biofilm voltammetry:direct electrochemical characterization of catalytic electrode-attached biofilms[J].Appl.Environ.Microbiol.,2008,74(23):7329-7337. [11] MARSHALL C W,ROSS D E,FICHOT E B,et al.Electrosynthesis of commodity chemicals by an autotrophic microbial community[J].Appl.Environ.Microbiol.,2012,78(23):8412-8420. [12] HERNÁNDEZ FERNÁNDEZ F J,DE LOS RÍOS A P,SALAR-GARCÍA M J,et al.Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment[J].Fuel Processing Technology,2015,138:284-297. [13] PANDIT A V,MAHADEVAN R.In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals[J].Microb.Cell Fact.,2011,10(1):76. [14] THRASH J C,COATES J D.Review:direct and indirect electrical stimulation of microbial metabolism[J].Environmental Science&Technology,2008,42(11):3921-3931. [15] SYDOW A,KRIEG T,MAYER F,et al.Electroactive bacteria——molecular mechanisms and genetic tools[J].Appl.Microbiol.Biotechnol.,2014,98(20):8481-8495. [16] MYERS C R,NEALSON K H.Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J].Science,1988,240(4857):1319-1321. [17] LOVLEY D R,PHILLIPS E J P.Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J].Applied and Environmental Microbiology,1988,54(6):1472-1480. [18] PATIL S A,HÁGERHÁLL C,GORTON L.Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems[J].Bioanalytical Reviews,2012,4(2-4):159-192. [19] KATO S.Biotechnological aspects of microbial extracellular electron transfer[J].Microbes Environ.,2015,30(2):133-139. [20] STRYCHARZ S M,GLAVEN R H,COPPI M V,et al.Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens[J].Bioelectrochemistry,2011,80(2):142-150. [21] BUSALMEN J P,Esteve-NÚÑEZ A,BEMÁ A,et al.C-type cytochromes wire electricity-producing bacteria to electrodes[J].Angew.Chem.Int.Ed.Engl.,2008,47(26):4874-4877. [22] MALVANKAR N S,VARGAS M,NEVIN K,et al.Structural basis for metallic-like conductivity in microbial nanowires[J].Mbio.,2015,6(2):e00084-15. [23] BAJRACHARYA S,TER HEIJNE A,BENETTON X D,et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode[J].Bioresour Technol.,2015,195:14-24. [24] MARSILI E,BARON D B,SHIKHARE I D,et al.Shewanella secretes flavins that mediate extracellular electron transfer[J].Proceedings of the National Academy of Sciences,2008,105(10):3968-3973. [25] BOON N,AELTERMAN P,CLAUWAERT P,et al.Metabolites produced by Pseudomonas sp.enable a Gram-positive bacterium to achieve extracellular electron transfer[J].Applied Microbiology and Biotechnology,2007,77(5):1119-1129. [26] DENG L F,LI F B,ZHOU S G,et al.A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells[J].Chinese Science Bulletin,2010,55(1):99-104. [27] CHOI O,UM Y,SANG B I.Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor[J].Biotechnology and Bioengineering,2012,109(10):2494-2502. [28] PARK D H,LAIVENIEKS M,GUETTLER M V,et al.Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J].Applied and Environmental Microbiology,1999,65(7):2912-2917. [29] MILLIKEN C E,MAY H D.Sustained generation of electricity by the spore-forming,Gram-positive,Desulfitobacterium hafniense strain DCB2[J].Applied Microbiology and Biotechnology,2007,73(5):1180-1189. [30] ROSENBAUM M,AULENTA F,VILLANO M,et al.Cathodes as electron donors for microbial metabolism:which extracellular electron transfer mechanisms are involved?[J].Bioresour Technol.,2011,102(1):324-333. [31] HE A Y,YIN C Y,XU H,et al.Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4[J].Bioprocess.Biosyst Eng.,2016,39(2):245-254. [32] ZHAO Y,CAO W,WANG Z,et al.Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells[J].Bioresource Technology,2016,202:152-157. [33] HARRINGTON T D,MOHAMED A,TRAN V N.Neutral red-mediated microbial electrosynthesis by Escherichia coli,Klebsiella pneumoniae,and Zymomonas mobilis[J].Bioresour Technol.,2015,195:57-65. [34] HARRINGTON T D,TRAN V N,MOHAMED A,et al.The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli:menaquinone reduction[J].Bioresour.Technol.,2015,192:689-695. [35] ZHANG L,ZHOU S,ZHUANG L,et al.Microbial fuel cell based on Klebsiella pneumoniae biofilm[J].Electrochemistry Communications,2008,10:1641-1643. [36] CHOI O,KIM T,WOO H M.Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum[J].Sci.Rep.,2014,4:6961. [37] HEIDELBERG J F,PAULSEN I T,NELSON K E,et al.Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J].Nat.Biotechnol.,2002,20(11):1118-1123. [38] METHE B A,NELSON K E,EISEN J A,et al.Genome of Geobacter sulfurreducens:metal reduction in subsurface environments[J].Science,2003,302(5652):1967-1969. [39] VALDÈS J,PEDROSO I,QUATRINI R,et al.Comparative genome analysis of Acidithiobacillus ferrooxidans,A.thiooxidans and A.caldus:insights into their metabolism and ecophysiology[J].Hydrometallurgy,2008,94(1-4):180-184. [40] LEANG C,UEKI T,NEVIN K P,et al.A genetic system for Clostridium ljungdahlii:a chassis for autotrophic production of biocommodities and a model homoacetogen[J].Applied and Environmental Microbiology,2013,79(4):1102-1109. [41] KÖPKE M,HELD C,HUJER S,et al.Clostridium ljungdahlii represents a microbial production platform based on syngas[J].Proceedings of the National Academy of Sciences,2010,107(29):13087-13092. [42] INGRAM L O,CONWAY T,CLARK D P,et al.Genetic engineering of ethanol production in Escherichia coli[J].Applied and Environmental Microbiology,1987,53(10):2420-2425. [43] TANG X,TAN Y,ZHU H,et al.Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli[J].Applied and Environmental Microbiology,2009,75(6):1628-1634. [44] NIELSEN D R,YOON S H,YUAN C J,et al.Metabolic engineering of acetoin and meso-2,3-butanediol biosynthesis in E.coli[J].Biotechnol.Journey,2010,5(3):274-284. [45] ERAVEST M A,AJO-FRANKLIN C M.Transforming exoelectrogens for biotechnology using synthetic biology[J].Biotechnology and Bioengineering,2016,113(4):687-697. [46] STURM-RICHTER K,GOLITSCH F,STURM G,et al.Unbalanced ermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells[J].Bioresource Technology,2015,186:89-96. [47] TERAVEST M A,ZAJDEL T J,AJO-FRANKLIN C M,et al.The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli[J].Chem.Electro.Chem.,2014,1(11):1874-1879. [48] FLYNN J M,ROSS D E,HUNT K A,et al.Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria[J].MBio,2010,1(5):e00190-10. [49] ZHAO Z,ZHANG Y,QUAN X,et al.Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell[J].Bioresource Technology,2015,200:235-244. [50] AGHABABAIE M,FARHADIAN M,JEIHANIPOUR A,et al.Effective factors on the performance of microbial fuel cells in wastewater treatment:a review[J].Environmental Technology Reviews,2015,4(1):71-89. [51] BADER J,MAST-GERLASH E,POPOVIĆ M K,et al.Relevance of microbial coculture fermentations in biotechnology[J].Journal of Applied Microbiology,2010,109(2):371-387. [52] SPEERS A M,YOUNG J M,REGUERA G.Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium[J].Environmental Science&Technology,2014,48(11):6350-6358. [53] VENKATARAMAN A,ROSENBAUM M A,PERKINS S D,et al.Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems[J].Energy&Environmental Science,2011,4(11):4550. [54] REN Z,WARD T E,REGAN J M.Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J].Environmental Science&Technology,2007,41(13):4781-4786. [55] KIM G T,WEBSTER G,WIMPENNY J W T,et al.Bacterial community structure,compartmentalization and activity in a microbial fuel cell[J].Journal of Applied Microbiology,2006,101(3):698-710. [56] DITZIG J,LIU H,LOGAN B E.Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)[J].International Journal of Hydrogen Energy,2007,32(13):2296-2304. [57] HEIDRICH E S,DOLFING J,SCOTT K,et al.Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell[J].Applied Microbiology and Biotechnology,2013,97(15):6979-6989. [58] XAFENIAS N,ANUNOBI M S O,MAPELLI V.Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations[J].Process Biochemistry,2015,50(10):1499-1508. [59] ZHOU M,CHEN C,FREGUIA S,et al.Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol[J].Environ.Sci.Technol.,2013,47(19):11199-11205. [60] NIE H,ZHANG T,CUI M,et al.Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells[J].Phys.Chem.Chem.Phys.,2013,15(34):14290-14294. [61] PATIL S A,ARENDS J B A,VANWONTERGHEM I,et al.Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2[J].Environ.Sci.Technol.,2015,49(14):8833-8843. [62] LI H,OPGENORTH P H,WERNICK D G,et al.Integrated electromicrobial conversion of CO2 to higher alcohols[J].Science,2012,335(6076):1596-1596. [63] PEGUIN S,DELORME P,GOMA G,et al.Enhanced alcohol yields in batch cultures of Clostridium acetobutylicum using a three-electrode potentiometric system with methyl viologen as electron carrier[J].Biotechnology Letters,1994,16(3):269-274. [64] SHIN H,ZEIKUS J,JAIN M.Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae[J].Applied Microbiology and Biotechnology,2002,58(4):476-481. [65] VAN EERTEN-JANSEN M C A A,TER HEIJNE A,GROOTSCHOLTEN T I M,et al.Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures[J].ACS Sustainable Chemistry&Engineering,2013,1(5):513-518. [66] TREMBLAY P L,ZHANG T.Electrifying microbes for the production of chemicals[J].Front Microbiol.,2015,6:201. [67] NEVIN K P,HENSLEY S A,FRANKS A E,et al.Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J].Appl.Environ.Microbiol.,2011,77(9):2882-2886. [68] BALCH W E,SCHOBERTH S,TANNER R S,et al.Acetobacterium,a new genus of hydrogen-oxidizing,carbon dioxide-reducing,anaerobic bacteria[J].International Journal of Systematic and Evolutionary Microbiology,1977,27(4):355-361. [69] NEVIN K P,WOODARD T L,FRANKS A E,et al.Microbial electrosynthesis:feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J].MBio,2010,1(2):e00103-10. [70] LUNDGREN D G,SILVER M.Ore leaching by bacteria[J].Annual Reviews in Microbiology,1980,34(1):263-283. [71] MATSUMOTO N,NAKASONO S,OHMURA N,et al.Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe (Ⅲ)[J].Biotechnology and Bioengineering,1999,64(6):716-721. [72] CHENG S,XING D,CALL D F,et al.Direct biological conversion of electrical current into methane by electromethanogenesis[J].Environmental Science&Technology,2009,43(10):3953-3958. [73] SOUSSAN L,RIESS J,ERABLE B,et al.Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes[J].Electrochemistry Communications,2013,28:27-30. [74] ZENG A P.Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum[J].Bioprocess Engineering,1996,14(4):169-175. [75] DU C Y,YAN H,ZHANG Y P,et al.Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae[J].Applied Microbiology and Biotechnology,2006,69(5):554-563. [76] RABAEY K,Bioelectrochemical systems:from extracellular electron transfer to biotechnological application[M].London:IWA Publishing,2010. [77] DENNIS P G,HARNISCH F,YEOH Y K,et al.Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system[J].Applied and Environmental Microbiology,2013,79(13):4008-4014. [78] LEE S Y,PARK J H,JANG S H,et al.Fermentative butanol production by Clostridia[J].Biotechnology and Bioengineering,2008,101(2):209-228. [79] LÜTKE-EVERSLOH T,BAHL H.Metabolic engineering of Clostridium acetobutylicum:recent advances to improve butanol production[J].Current Opinion in Biotechnology,2011,22(5):634-647. [80] GALLARDO R,ACEVEDO A,QUINTER J,et al.In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply[J].Bioprocess and Biosystems Engineering,2016,39(2):295-305. [81] MCKINLAY J B,VIEILLE C,ZEIKUS J G.Prospects for a bio-based succinate industry[J].Applied Microbiology and Biotechnology,2007,76(4):727-740. [82] 奚永兰,陈可泉,李建,等.琥珀酸发酵过程中固定CO2的研究进展[J].化工进展,2010,29(7):1314-1319. [83] PARK D H,LAIVENIEKS M,GUETTLER M V,et al.Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J].Applied and Environmental Microbiology,1999,65(7):2912-2917. |
[1] | WANG Xueting, GU Xia, XU Xianbao, ZHAO Lei, XUE Gang, LI Xiang. Effectiveness of hydrothermal pretreatment on valeric acid production during food waste fermentation [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4994-5002. |
[2] | QIN Kai, YANG Shilin, LI Jun, CHU Zhenyu, BO Cuimei. A Kalman filter algorithm-based high precision detection method for glucoamylase biosensors [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3177-3186. |
[3] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[4] | WANG Chuandong, ZHANG Junqi, LIU Dingyuan, MA Yuanyuan, LI Feng, SONG Hao. Co-utilization of xylose and glucose to produce chemicals by microorganisms [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 354-372. |
[5] | LI Wanqi, YANG Fengjuan, JIA Dechen, JIANG Weihong, GU Yang. Biological utilization and conversion of syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. |
[6] | WU Hanzhu, SI Zhihao, QIN Peiyong. Current progress of in situ bioethanol separation technology [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1318-1329. |
[7] | TANG Wenxiu, WANG Xueming, GUO Liang, JI Lihao, GAO Cong, CHEN Xiulai, LIU Liming. Metabolic engineering of Escherichia coli to produce succinic acid [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 938-950. |
[8] | QI Zhenhua, ZHOU Rong, BAI Yanan, LI Yuqin, TANG Yufang. Fermentation wastewater treatment and high-quality protein production by Chlorella pyrenoidosa under fed-batch mode [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6733-6743. |
[9] | ZHANG Qiang, CHEN Shiyang. Effect of oxygen-assisted hydrothermal pretreatment on fermentation of corn stover to ethanol [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 161-165. |
[10] | GAO Hao, LU Jiasheng, ZHANG Wenming, DONG Weiliang, FANG Yan, YU Ziyi, XIN Fengxue, JIANG Min. Application of material-mediated cell immobilization technology in biological fermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3923-3931. |
[11] | LI Ling, YU Yong, HU Yonghong. Research progress in production of lipstatinfermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2251-2257. |
[12] | LI Yang, ZHU Chenhui, FAN Daidi. Green biological manufacture and application of recombinant collagen [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1262-1275. |
[13] | CAI Di, LI Shufeng, SI Zhihao, QIN Peiyong, TAN Tianwei. Current advances and development of bio-butanol separation techniques [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1161-1177. |
[14] | ZHANG Cunsheng, LIU Yan, YANG Li, TIAN Yufei. Research progress of hexanol production through anaerobic fermentation of wasted industrial syngas [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1604-1610. |
[15] | XIAO Xiangzhe, CHEN Siyuan, TENG Jun, DONG Shanyan, LIAN Junfeng, ZHU Yichun. A new interpretation of anaerobic hydrolysis: rapid hydrolysis and slow hydrolysis [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1586-1593. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |