Chemical Industry and Engineering Progree ›› 2016, Vol. 35 ›› Issue (01): 10-17.DOI: 10.16085/j.issn.1000-6613.2016.01.002
Previous Articles Next Articles
LIU Zhaoli, ZHANG Pengfei
Received:
2015-07-08
Revised:
2015-07-29
Online:
2016-01-05
Published:
2016-01-05
刘兆利, 张鹏飞
通讯作者:
张鹏飞,副研究员,研究方向为化工传质与分离。E-mail::zhangpf@tju.edu.cn。
作者简介:
刘兆利(1989-),男,硕士。E-mail::liuzhaoli0302@163.com。
CLC Number:
LIU Zhaoli, ZHANG Pengfei. Applications of microreactor in chemistry and chemical engineering[J]. Chemical Industry and Engineering Progree, 2016, 35(01): 10-17.
刘兆利, 张鹏飞. 微反应器在化学化工领域中的应用[J]. 化工进展, 2016, 35(01): 10-17.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016.01.002
[1] 褚良银,汪伟,巨晓洁,等. 微流控法构建微尺度相界面及制备新型功能材料研究进展[J]. 化工进展,2014,33(9):2229-2234. [2] PROTASOVA L N,BULUT M,ORMEROD D,et al. Latest highlights in liquid-phase reactions for organic synthesis in microreactors[J]. Organic Process Research & Development,2013, 17(5):760. [3] 郑亚锋,赵阳,辛峰. 微反应器研究及展望[J]. 化工进展,2004, 23(5):462-464. [4] FLETCHER P D I,HASWELL S J,VILLAR P E,et al. Micro reactors:principles and applications in organic synthesis[J]. Tetrahedron,2002,58(39):4735-4736. [5] GEYER K,CODÉE J D,SEEBERGER P H. Microreactors as tools for synthetic chemists-the chemists' round-bottomed flask of the 21st century?[J]. Chemistry——A European Journal,2007,38(2):8434-8442. [6] MILLS P L,QUIRAM D J,RYLEY J F. Microreactor technology and process miniaturization for catalytic reactions——a perspective on recent developments and emerging technologies[J]. Chemical Engineering Science,2007,62(24):6992-7010. [7] 赵述芳,白琳,付宇航,等. 液滴流微反应器的基础研究及其应用[J]. 化工进展,2015,34(3):593-607,616. [8] MAE K. Advanced chemical processing using microspace[J]. Chemical Engineering Science,2007,62(18/19/20):4842-4851. [9] 陈光文,赵玉潮,乐军,等. 微化工过程中的传递现象[J]. 化工学报,2013,64(1):63-75. [10] McGOVERN S,HARISH G,PAI C,et al. Multiphase flow regimes for hydrogenation in a catalyst-trap microreactor[J]. Chemical Engineering Journal,2008,135(s1):s229-s236. [11] JOVANOVIC J,REBROV E V,NIJHUIS T,et al. Liquid-liquid flow in a capillary microreactor:hydrodynamic flow patterns and extraction performance[J]. Industrial & Engineering Chemistry Research,2011,51(2):1015. [12] 骆广生,王凯,吕阳成,等. 微尺度下非均相反应的研究进展[J]. 化工学报,2013,64(1):165-172. [13] WILES C, WATTS P. Recent advances in micro reaction technology[J]. Chemical Communications,2011,47(23):6512. [14] HESSEL V,LÖWE H,SCHÖNFELD F. Micromixers——a review on passive and active mixing principles[J]. Chemical Engineering Science,2005,60(8):2479-2483. [15] MASON B P,PRICE K E,STEINBACHER J L,et al. Greener approaches to organic synthesis using microreactor technology[J]. Chemical Reviews,2007,107(6):2301-2307. [16] 赵玉潮,陈光文. 微化工系统的并行放大研究进展[J]. 中国科学(化学),2015,45(1):16-23. [17] ZHANG X, STEFANICK S, VILLANI F J. Application of microreactor technology in process development[J]. Organic Process Rresearch & Development,2004,8(3):455. [18] 赵玉潮,张好翠,沈佳妮,等. 微化工技术在化学反应中的应用进展[J]. 中国科技论文,2008,3(3):157-169. [19] ROBERGE D M,GOTTSPONER M,EYHOLZER M,et al. Industrial design,scale-up,and use of microreactors[J]. Chemistry Today,2009,7:8-11. [20] 骆广生,王凯,王佩坚,等. 微反应器内聚合物合成研究进展[J]. 化工学报,2014,65(7):2564. [21] WOHLGEMUTH R,PLAZL I,PLAZL Ž P,et al. Microscale technology and biocatalytic processes:opportunities and challenges for synthesis[J]. Trends in Biotechnology,2015,33(5):302-314. [22] USUTANI H,TOMIDA Y,NAGAKI A,et al. Generation and reactions of o-bromophenyllithium without benzyne formation using a microreactor[J]. Journal of the American Chemical Society,2007, 129(11):3046-3047. [23] ZHANG X, STEFANICK S, VILLANI F J. Application of microreactor technology in process development[J]. Organic Process Research & Development,2004,8(3):456. [24] NEWMAN S G,GU L,LESNIAK C,et al. Rapid Wolff-Kishner reductions in a silicon carbide microreactor[J]. Green Chemistry, 2014,16(1):176-180. [25] MÜLLER S T,WIRTH T. Diazo compounds in continuous-flow technology[J]. ChemSusChem,2015,8(2):245-250. [26] HASWELL S J,WATTS P. Green chemistry:synthesis in micro reactors[J]. Green Chemistry,2003,5(2):240-249. [27] YOSHIDA J I,KIM H,NAGAKI A. Green and sustainable chemical synthesis using flow microreactors[J]. ChemSusChem,2011,4(3):331-340. [28] NAVARRO-BRULL F J,POVEDA P,RUIZ-FEMENIA R,et al. Guidelines for the design of efficient sono-microreactors[J]. Green Processing and Synthesis,2014,3(5):311-320. [29] KULKARNI A A. Continuous flow nitration in miniaturized devices[J]. Beilstein Journal of Organic Chemistry,2014,10(1):405-424. [30] 李毅,曹军,应翔,等. 费托合成微反应器研究进展[J]. 化工进展, 2015,34(6):1519-1525. [31] ZUIDHOF N T,DE CROON M H,SCHOUTEN J C,et al. Beckmann rearrangement of cyclohexanone oxime to ϵ-caprolactam in a microreactor[J]. Chemical Engineering & Technology,2012,35(7):1257-1261. [32] PROTASOVA L N,BULUT M,ORMEROD D,et al. Latest highlights in liquid-phase reactions for organic synthesis in microreactors[J]. Organic Process Research & Development,2013, 17(5):760-791. [33] AMII H,NAGAKI A,YOSHIDA J I. Flow microreactor synthesis in organo-fluorine chemistry[J]. Beilstein Journal of Organic Chemistry,2013,9(1):2793-2802. [34] PENNEMANN H,WATTS P,HASWELL S J,et al. Benchmarking of microreactor applications[J]. Organic Process Research & Development,2004,8(3):433-434. [35] WATTS P,WILES C. Recent advances in synthetic micro reaction technology[J]. Chemical Communications,2007(5):443-467. [36] SERRA C A,CHANG Z. Microfluidic-assisted synthesis of polymer particles[J]. Chemical Engineering & Technology,2008,31(8):1099-1115. [37] BALLY F, SERRA C A, HESSEL V, et al. Homogeneous polymerization:benefits brought by microprocess technologies to the synthesis and production of polymers[J]. Macromolecular Reaction Engineering,2010,4(9/10):543-561. [38] BALLY F,SERRA C A,HESSEL V,et al. Micromixer-assisted polymerization processes[J]. Chemical Engineering Science,2011, 66(7):1449-1462. [39] 宋顺刚,顾雪萍,王嘉骏,等. 微反应器在聚合反应中的应用[J]. 化工进展,2012,31(2):259-267. [40] IWASAKI T, YOSHIDA J I. Free radical polymerization in microreactors. significant improvement in molecular weight distribution control[J]. Macromolecules,2005,38(4):1159-1163. [41] RAZZAQ T,GLASNOV T N,KAPPE C O. Continuous-flow microreactor chemistry under high-temperature/pressure conditions[J]. European Journal of Organic Chemistry,2009(9):1321-1325. [42] GÓMEZ-DE P S,PUYOL M,IZQUIERDO D,et al. A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnS nanocrystals with on-line optical characterization[J]. Nanoscale, 2012,4(4):1328-1335. [43] VAN DEN BROEK S A,LELIVELD J R,BECKER R,et al. Continuous flow production of thermally unstable intermediates in a microreactor with inline IR-analysis:controlled vilsmeier-haack formylation of electron-rich arenes[J]. Organic Process Research & Development,2012,16(5):934-938. [44] GROSS E,SHU X Z,ALAYOGLU S,et al. In situ IR and X-ray high spatial-resolution microspectroscopy measurements of multistep organic transformation in flow microreactor catalyzed by Au nanoclusters[J]. Journal of the American Chemical Society,2014,136(9):3624-3629. [45] ROBERGE D M,GOTTSPONER M,EYHOLZER M,et al. Industrial design,scale-up,and use of microreactors[J]. Chemistry Today,2009,7:8-11. [46] ROBERGE D M,DUCRY L,BIELER N,et al. Microreactor technology:a revolution for the fine chemical and pharmaceutical industries?[J]. Chemical Engineering & Technology,2005,28(3):318-323. [47] ROBERGE D M, ZIMMERMANN B, RAINONE F, et al. Microreactor technology and continuous processes in the fine chemical and pharmaceutical industry:is the revolution underway?[J]. Organic Process Research & Development,2008,12(5):905-910. [48] PAL R,YANG M,LIN R,et al. An integrated microfluidic device for influenza and other genetic analyses[J]. Lab on a Chip,2005,5(10):1024. [49] WATTS P,HASWELL S J. The application of micro reactors for organic synthesis[J]. Chemical Society Reviews,2005,36(21):235-238. [50] BRAUNE S,PÖCHLAUER P,REINTJENS R,et al. Selective nitration in a microreactor for pharmaceutical production under cGMP conditions[J]. Chemistry Today,2009,27(1):26-29. [51] PENNEMANN H,LÖWE H,HESSEL V. Chemical microprocess technology-from laboratory-scale to production[J]. Chemical Engineering Science,2004,59:4789-4794. [52] MAURYA R A,MIN K I,KIM D P. Continuous flow synthesis of toxic ethyl diazoacetate for utilization in an integrated microfluidic system[J]. Green Chemistry,2014,16(1):116-120. [53] GONZÁLEZ J C,POECHLAUER P,BROXTERMAN Q B,et al. Key green engineering research areas for sustainable manufacturing:a perspective from pharmaceutical and fine chemicals manufacturers[J]. Organic Process Research & Development,2011,15(4):900-911. [54] BOEHM C R,FREEMONT P S,CES O. Design of a prototype flow microreactor for synthetic biology in vitro[J]. Lab on a Chip,2013, 13(17):3426-3432. [55] MATSUI K,MORIMOTO S,ASANO T,et al. Enzyme-linked immunosorbent assay using vertical micro reactor stack for the detection of biomolecules[J]. Electronics and Communications in Japan,2010,93(4):50-57. [56] PETERSON D S, ROHR T, SVEC F, et al. Enzymatic microreactor-on-a-chip:protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices[J]. Analytical Chemistry,2002,74(16):4081-4088. [57] MIN W,WANG W, CHEN J, et al. On-line immobilized acetylcholinesterase microreactor for screening of inhibitors from natural extracts by capillary electrophoresis[J]. Analytical and Bioanalytical Chemistry,2012,404(8):2397-2405. [58] IQBAL J,IQBAL S,MÜLLER C E. Advances in immobilized enzyme microbioreactors in capillary electrophoresis[J]. Analyst, 2013,138(11):3104-3116. [59] MATSUURA S I,ISHII R,ITOH T,et al. Immobilization of enzyme-encapsulated nanoporous material in a microreactor and reaction analysis[J]. Chemical Engineering Journal,2011,167(2):744-749. [60] RAMESH S,CHERKUPALLY P,DE LA TORRE B G,et al. Microreactors for peptide synthesis:looking through the eyes of twenty first century!!![J]. Amino Acids,2014,46(9):2091-2104. [61] SCHAERLI Y,WOOTTON R C,ROBINSON T,et al. Continuousflow polymerase chain reaction of single-copy DNA in microfluidic microdroplets[J]. Analytical Chemistry,2008,81(1):302-306. [62] POE S L,CUMMINGS M A,HAAF M P,et al. Solving the clogging problem:precipitate-forming reactions in flow[J]. Angewandte Chemie (International Edition),2006,45(10):1544-1548. [63] HARTMAN R L. Managing solids in microreactors for the upstream continuous processing of fine chemicals[J]. Organic Process Research & Development,2012,16(5):870-887. [64] SCHOENITZ M,GRUNDEMANN L,AUGUSTIN W,et al. Fouling in microstructured devices:a review[J]. Chemical Communications, 2015,51(39):8213-8228. [65] JENSEN K F,REIZMAN B J,NEWMAN S G. Tools for chemical synthesis in microsystems[J]. Lab on a Chip,2014,14(17):3206-3212. [66] NOËL T,NABER J R,HARTMAN R L,et al. Palladium-catalyzed amination reactions in flow:overcoming the challenges of clogging via acoustic irradiation[J]. Chemical Science,2011,2(2):287-290. [67] HORIE T,SUMINO M,TANAKA T,et al. Photodimerization of maleic anhydride in a microreactor without clogging[J]. Organic Process Research & Development,2010,14(2):405. [68] HARTMAN R L,NABER J R,ZABORENKO N,et al. Overcoming the challenges of solid bridging and constriction during Pd-Catalyzed C-N bond formation in microreactors[J]. Organic Process Research & Development,2010,14(6):1347. [69] ZHOU W,TANG Y,WANG Q,et al. Optimization of catalyst loading for porous copper fiber sintered felts used in methanol steam reforming microreactors[J]. Chemical Engineering & Technology, 2013,36(2):307-308. [70] STUTZ M J,HOTZ N,POULIKAKOS D. Optimization of methane reforming in a microreactor-effects of catalyst loading and geometry[J]. Chemical Engineering Science,2006,61(12):4027-4040. [71] 董广新,蒋稼欢. 基于微流动混合的微纳米粒子合成进展[J]. 化工进展,2010,29(11):2026-2033. [72] CHEN P C,WU M H,WANG Y N. Microchannel geometry design for rapid and uniform reagent distribution[J]. Microfluidics and Nanofluidics,2014,17(2):275-285. |
[1] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[2] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[3] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[4] | QIAO Xu, ZHANG Zhuxiu. Consideration and exploration of the development path for inherent safety of chemical engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3319-3324. |
[5] | LIU Weixiao, LIU Yang, GAO Fulei, WANG Wei, WANG Yinglei. Application of microreactor in synthesis and quality improvement of energetic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3349-3364. |
[6] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[7] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[8] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[9] | WANG Jiaxin, PAN Yong, XIONG Xinyi, WAN Xiaoyue, WANG Jianchao. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. |
[10] | CHEN Weiyang, SONG Xin, YIN Yaran, ZHANG Xianming, ZHU Chunying, FU Taotao, MA Youguang. Effect of liquid viscosity on bubble interface in the rectangular microchannel [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3468-3477. |
[11] | TAO Mengqi, LIU Meihong, KANG Yuchi. Analysis of fluid across a single cylinder and two parallel cylinders in a micro flow channel by micro-PIV [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2836-2844. |
[12] | TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687. |
[13] | YAN Xingqing, DAI Xingtao, YU Jianliang, LI Yue, HAN Bing, HU Jun. Research progress of high-pressure hydrogen leakage and jet flow [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1118-1128. |
[14] | LUO Xiaoping, FAN Peng, ZHOU Jianyang, WANG Mengyuan. Boiling curve and onset of nucleate boiling of microchannels with corrugated walls [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1228-1239. |
[15] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |