Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 29-37.DOI: 10.16085/j.issn.1000-6613.2025-1064
• Chemical processes and equipment • Previous Articles Next Articles
SONG Yingjie(
), ZHANG Lei(
), DU Jian
Received:2025-07-24
Revised:2025-08-29
Online:2025-11-24
Published:2025-10-25
Contact:
ZHANG Lei
通讯作者:
张磊
作者简介:宋英杰(1999—),男,硕士研究生,研究方向为过程系统工程。E-mail:songyj@mail.dlut.edu.com。
基金资助:CLC Number:
SONG Yingjie, ZHANG Lei, DU Jian. Multi-flavor molecule prediction model based on pre-training and fine-tuning strategies[J]. Chemical Industry and Engineering Progress, 2025, 44(S1): 29-37.
宋英杰, 张磊, 都健. 基于预训练和微调策略的多味道分子预测模型[J]. 化工进展, 2025, 44(S1): 29-37.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-1064
| 数据集 | 味道类别 | 分子数 |
|---|---|---|
| FlavorDB[ | 甜、苦、酸、未定义 | 25595 |
| BitterDB[ | 苦、非苦 | 2250 |
| UMP442[ | 鲜、非鲜 | 140 |
| ChemTastesDB[ | 甜、苦、酸、鲜、其他少见味型 | 2944 |
| SweetnerDB[ | 甜 | 316 |
| BitterSweet[ | 甜、苦 | 1202 |
| PlantMolecularTasteDB[ | 甜、苦、酸、鲜、其他少见味型 | 1527 |
| VirtuousMultiTaste[ | 甜、苦、鲜、其他少见味型 | 4717 |
| 国际纯粹与应用化学联合会(IUPAC)[ | 酸 | 1513 |
| 数据集 | 味道类别 | 分子数 |
|---|---|---|
| FlavorDB[ | 甜、苦、酸、未定义 | 25595 |
| BitterDB[ | 苦、非苦 | 2250 |
| UMP442[ | 鲜、非鲜 | 140 |
| ChemTastesDB[ | 甜、苦、酸、鲜、其他少见味型 | 2944 |
| SweetnerDB[ | 甜 | 316 |
| BitterSweet[ | 甜、苦 | 1202 |
| PlantMolecularTasteDB[ | 甜、苦、酸、鲜、其他少见味型 | 1527 |
| VirtuousMultiTaste[ | 甜、苦、鲜、其他少见味型 | 4717 |
| 国际纯粹与应用化学联合会(IUPAC)[ | 酸 | 1513 |
| 分子SMILES | FlavorDB | ChemTastesDB | VirtuousMultiTast | 本研究 |
|---|---|---|---|---|
| [Ca+2].[Cl-].[Cl-] | 未定义 | 苦、咸 | 苦 | 苦、其他 |
| NC(Cc1ccccc1)C( | 苦、甜、无味 | 轻微苦、无味 | 甜 | 苦、甜、其他 |
| O | 微酸 | 酸、鲜 | 其他(非甜苦鲜) | 酸、鲜 |
| O | 辛辣、酸 | 酸 | 甜 | 甜、酸、其他 |
CCCCCCCC( 1 | 辛辣 | 辛辣、麻 | 甜 | 甜、其他 |
| 分子SMILES | FlavorDB | ChemTastesDB | VirtuousMultiTast | 本研究 |
|---|---|---|---|---|
| [Ca+2].[Cl-].[Cl-] | 未定义 | 苦、咸 | 苦 | 苦、其他 |
| NC(Cc1ccccc1)C( | 苦、甜、无味 | 轻微苦、无味 | 甜 | 苦、甜、其他 |
| O | 微酸 | 酸、鲜 | 其他(非甜苦鲜) | 酸、鲜 |
| O | 辛辣、酸 | 酸 | 甜 | 甜、酸、其他 |
CCCCCCCC( 1 | 辛辣 | 辛辣、麻 | 甜 | 甜、其他 |
| 模型 | 准确率 | 接受者操作特征曲线下面积(AUROC) | 平均精度-召回率曲线下的面积(AUPRC) | F1 | 召回率 |
|---|---|---|---|---|---|
| VirtuousMultiTaste[ | 0.818 | 0.870 | — | 0.658 | 0.713 |
| 风味分析和识别(FART)[ | 0.884 | 0.969 | — | 0.771 | 0.785 |
| Uni-Mol2[ | 0.945 | 0.974 | 0.901 | 0.831 | 0.831 |
| Uni-Mol2+微调 | 0.952 | 0.975 | 0.904 | 0.840 | 0.833 |
| 模型 | 准确率 | 接受者操作特征曲线下面积(AUROC) | 平均精度-召回率曲线下的面积(AUPRC) | F1 | 召回率 |
|---|---|---|---|---|---|
| VirtuousMultiTaste[ | 0.818 | 0.870 | — | 0.658 | 0.713 |
| 风味分析和识别(FART)[ | 0.884 | 0.969 | — | 0.771 | 0.785 |
| Uni-Mol2[ | 0.945 | 0.974 | 0.901 | 0.831 | 0.831 |
| Uni-Mol2+微调 | 0.952 | 0.975 | 0.904 | 0.840 | 0.833 |
| [1] | QUEIROZ L P, NOGUEIRA I B R, RIBEIRO A M. Flavor Engineering: A comprehensive review of biological foundations, AI integration, industrial development, and socio-cultural dynamics[J]. Food Research International, 2024, 196: 115100. |
| [2] | SUNG Jeehye, FROST Scott, Joon Hyuk SUH. Progress in flavor research in food: Flavor chemistry in food quality, safety, and sensory properties[J]. Food Chemistry: X, 2025, 25: 102071. |
| [3] | KEMP Sarah E, COMMITTEE IFST PFSG. Application of sensory evaluation in food research[J]. International Journal of Food Science & Technology, 2008, 43(9): 1507-1511. |
| [4] | KIANI Sajad, MINAEI Saeid, Mahdi GHASEMI-VARNAMKHASTI. Fusion of artificial senses as a robust approach to food quality assessment[J]. Journal of Food Engineering, 2016, 171: 230-239. |
| [5] | DI ROSA Ambra Rita, LEONE Francesco, CHELI Federica, et al. Fusion of electronic nose, electronic tongue and computer vision for animal source food authentication and quality assessment—A review[J]. Journal of Food Engineering, 2017, 210: 62-75. |
| [6] | 毛海涛. 混合机器学习与机理建模的香精产品设计[D]. 大连: 大连理工大学, 2020. |
| MAO Haitao. Fragrance product design with a hybrid machine learning and mechanistic modeling approach[D]. Dalian: Dalian University of Technology, 2020. | |
| [7] | ZENG Xiangquan, CAO Rui, XI Yu, et al. Food flavor analysis 4.0: A cross-domain application of machine learning[J]. Trends in Food Science & Technology, 2023, 138: 116-125. |
| [8] | GOEL Mansi, BAGLER Ganesh. Computational gastronomy: A data science approach to food[J]. Journal of Biosciences, 2022, 47(1): 12. |
| [9] | YANG Xin, Chi-Tang HO, GAO Xiaoyu, et al. Machine learning: An effective tool for monitoring and ensuring food safety, quality, and nutrition[J]. Food Chemistry, 2025, 477: 143391. |
| [10] | QUEIROZ Luana P, REBELLO Carine M, COSTA Erbet A, et al. Transfer learning approach to develop natural molecules with specific flavor requirements[J]. Industrial & Engineering Chemistry Research, 2023, 62(23): 9062-9076. |
| [11] | ROJAS Cristian, BALLABIO Davide, CONSONNI Viviana, et al. Quantitative structure-activity relationships to predict sweet and non-sweet tastes[J]. Theoretical Chemistry Accounts, 2016, 135(3): 66. |
| [12] | BO Weichen, QIN Dongya, ZHENG Xin, et al. Prediction of bitterant and sweetener using structure-taste relationship models based on an artificial neural network[J]. Food Research International, 2022, 153: 110974. |
| [13] | DUTTA Prantar, JAIN Deepak, GUPTA Rakesh, et al. Classification of tastants: A deep learning based approach[J]. Molecular Informatics, 2023, 42(12): e202300146. |
| [14] | ANDROUTSOS Lampros, PALLANTE Lorenzo, BOMPOTAS Agorakis, et al. Predicting multiple taste sensations with a multiobjective machine learning method[J]. NPJ Science of Food, 2024, 8: 47. |
| [15] | ZIMMERMANN Yoel, SIEBEN Leif, SENG Henrik, et al. A chemical language model for molecular taste prediction[J]. NPJ Science of Food, 2025, 9(1): 122. |
| [16] | KOU Xingran, SHI Peiqin, GAO Chukun, et al. Data-driven elucidation of flavor chemistry[J]. Journal of Agricultural and Food Chemistry, 2023, 71(18): 6789-6802. |
| [17] | TUWANI Rudraksh, WADHWA Somin, BAGLER Ganesh. BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules[J]. Scientific Reports, 2019, 9(1): 7155. |
| [18] | ROJAS Cristian, BALLABIO Davide, CONSONNI Viviana, et al. Classification-based machine learning approaches to predict the taste of molecules: A review[J]. Food Research International, 2023, 171: 113036. |
| [19] | MALAVOLTA Marta, PALLANTE Lorenzo, MAVKOV Bojan, et al. A survey on computational taste predictors[J]. European Food Research and Technology, 2022, 248(9): 2215-2235. |
| [20] | DUTTA Prantar, GAJULA Kishore, VERMA Nitu, et al. Computational screening of umami tastants using deep learning[J]. Molecular Diversity, 2025, 29(4): 2979-2993. |
| [21] | BANERJEE Priyanka, PREISSNER Robert. BitterSweetForest: A random forest based binary classifier to predict bitterness and sweetness of chemical compounds[J]. Frontiers in Chemistry, 2018, 6: 93. |
| [22] | SONG Renxiu, LIU Kaifeng, HE Qizheng, et al. Exploring bitter and sweet: The application of large language models in molecular taste prediction[J]. Journal of Chemical Information and Modeling, 2024, 64(10): 4102-4111. |
| [23] | QUEIROZ Luana P, REBELLO Carine M, COSTA Erbet A, et al. Generating flavor molecules using scientific machine learning[J]. ACS Omega, 2023, 8(12): 10875-10887. |
| [24] | JI Xiaohong, WANG Zhen, GAO Zhifeng, et al. Uni-Mol2: Exploring molecular pretraining model at scale[EB/OL]. (2024-07-01)[2025-07-24]. . |
| [25] | GOEL Mansi, GROVER Nishant, BATRA Devansh, et al. FlavorDB2: An updated database of flavor molecules[J]. Journal of Food Science, 2024, 89(11): 7076-7082. |
| [26] | ZIAIKIN Evgenii, DAVID Moran, USPENSKAYA Sofya, et al. BitterDB: 2024 update on bitter ligands and taste receptors[J]. Nucleic Acids Research, 2025, 53(D1): D1645-D1650. |
| [27] | CHAROENKWAN Phasit, YANA Janchai, NANTASENAMAT Chanin, et al. iUmami-SCM: A novel sequence-based predictor for prediction and analysis of umami peptides using a scoring card method with propensity scores of dipeptides[J]. Journal of Chemical Information and Modeling, 2020, 60(12): 6666-6678. |
| [28] | ROJAS Cristian, BALLABIO Davide, PACHECO SARMIENTO Karen, et al. ChemTastesDB: A curated database of molecular tastants[J]. Food Chemistry: Molecular Sciences, 2022, 4: 100090. |
| [29] | Jean-Baptiste CHÉRON, CASCIUC Iuri, GOLEBIOWSKI Jérôme, et al. Sweetness prediction of natural compounds[J]. Food Chemistry, 2017, 221: 1421-1425. |
| [30] | GRADINARU Teodora-Cristiana, PETRAN Madalina, DRAGOS Dorin, et al. PlantMolecularTasteDB: A database of taste active phytochemicals[J]. Frontiers in Pharmacology, 2022, 12: 751712. |
| [31] | SUNDARARAJAN Mukund, TALY Ankur, YAN Qiqi. Axiomatic attribution for deep networks[EB/OL]. (2017-06-13)[2025-07-24]. . |
| [1] | YANG Zhenglu, YANG Lifeng, LU Xiaofei, SUO Xian, ZHANG Anyun, CUI Xili, XING Huabin. Advances in machine learning accelerating the screening and discovery of porous adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4288-4301. |
| [2] | ZHU Xiaozhong, FANG Wei, ZHAO Yi. Application of deep VGG model-based prediction in ethylene cracker plant [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4419-4429. |
| [3] | LI Xiang, LI Jiaying, NI Heng, SUN Haoran, CAO Jiawei, CHEN Yuxuan, LIU Fengjiao. Advances in the prediction of activation energy barriers for hydrogen atom transfer reactions [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3336-3344. |
| [4] | LI Ming, ZHOU Yi, NAN Lan, YE Xiaosheng. Advances in automatic optimization of continuous synthesis [J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3190-3198. |
| [5] | WANG Xiaonan, FU Siwei, LIU Kuan, LIN Congsheng, LIN Xiaofeng. Machine learning methods for sustainable alternatives and transition of energy materials [J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2767-2776. |
| [6] | SUN Jian, ZHANG Haiyong, WANG Chengxiu, SUN Zeneng, LAN Xingying, GAO Jinsen, ZHU Jingxu. Cluster characteristics in gas-solids circulating fluidized bed based on k-means algorithm-assisted imaging method [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 625-634. |
| [7] | DAI Zhengshu, ZUO Yuanhao, CHEN Xiaoluo, ZHANG Li, ZHAO Gen, ZHANG Xuejun, ZHANG Hua. Process in the application of machine learning in ejector research [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 1-12. |
| [8] | ZHANG Zihang, WANG Shurong. Research advances in biomass pyrolysis conversion and low-carbon utilization of products [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3692-3708. |
| [9] | HUANG Zhixin, WANG Junyao, YUAN Xiangzhou, DENG Shuai, ZHAO Jie, ZHANG Xinyi. Research advances on upcycling organic solid waste into CO2 adsorbents: A cross-research review [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5748-5764. |
| [10] | WANG Lu, ZHANG Lei, DU Jian. High-throughput screening of zeolite materials for CO2/N2 selective adsorption separation by machine learning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 148-158. |
| [11] | LIAN Cheng, CHENG Jin, HUANG Pan, TAO Haolan, YANG Jie, LIU Honglai. Thermodynamics of new energy chemical engineering [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4711-4733. |
| [12] | YANG Jie, CHANG Hui, SUI Zhijun, ZHU Kake, ZHU Yi’an, ZHOU Xinggui. Advances in chemical looping methane oxidation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1928-1947. |
| [13] | ZHANG Mengxuan, LIU Hongchen, WANG Min, LAN Xingying, SHI Xiaogang, GAO Jinsen. Intelligence hybrid modeling method and applications in chemical process [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1765-1776. |
| [14] | ZHU Litao, OUYANG Bo, ZHANG Xibao, LUO Zhenghong. Progress on application of machine learning to multiphase reactors [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1699-1714. |
| [15] | Sicong MA, Zhipan LIU. Global neural network potential applications in heterogeneous catalysis [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3433-3443. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |