Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (S1): 19-28.DOI: 10.16085/j.issn.1000-6613.2024-2129

• Chemical processes and equipment • Previous Articles     Next Articles

Numerical simulation of temperature swing adsorption for SF6 recovery from mixed insulating gas

WU Jinyi1(), ZHAO Ruikai1,2(), DENG Shuai1,2, ZHANG Jiaqi1, GAO Chunxiao1, LIU Weihua1, ZHAO Li1   

  1. 1.State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
    2.International Joint Research Center for Ultra-Low Energy Carbon Capture, Tianjin University, Tianjin 300350, China
  • Received:2024-12-31 Revised:2025-03-17 Online:2025-11-24 Published:2025-10-25
  • Contact: ZHAO Ruikai

混合绝缘气体变温吸附分离回收SF6的数值模拟

武锦怡1(), 赵睿恺1,2(), 邓帅1,2, 张家麒1, 高春霄1, 刘葳桦1, 赵力1   

  1. 1.天津大学先进内燃动力全国重点实验室,天津 300350
    2.天津市超低能耗碳捕集国际联合研究中心,天津 300350
  • 通讯作者: 赵睿恺
  • 作者简介:武锦怡(2003—),女,硕士研究生,研究方向为SF6吸附分离回收。E-mail:wjinyi124@163.com
  • 基金资助:
    国家自然科学基金青年科学基金(52306265);天津市自然科学基金重点项目(22JCZDJC00540)

Abstract:

Sulfur hexafluoride (SF6) is a strong greenhouse gas. To reduce its emission, this study proposed recovering SF6 from mixed insulating gas (with 85% SF₆ and 15% N₂ mole fractions) using temperature swing adsorption (TSA) cycle. Numerical simulation was employed to establish the physical and mathematical models of the cycle, and the reliability of the model was verified through comparison with the experimental data in the literature. Three performance evaluation indices (purity, recovery and specific energy consumption) were used to investigate the effects of different adsorbent materials, geometric dimensions of adsorption bed and operating conditions on TSA cycle performance. The results showed that Mg-MOF-74 exhibited the best cycle performance, followed by AC, UIO-66 and 13X. For adsorption beds with equivalent length-to-diameter ratios ranging from 6.9 to 23.6, the cycle performance improved with increasing ratio, achieving maximum purity and recovery rates of 69.31% and 62.90%, respectively, and a minimum specific energy consumption of 1.89MJ/kg. Lower adsorption temperatures and higher desorption temperatures increased the SF₆ cyclic working capacity of adsorbents, thereby enhancing SF₆ recovery from mixed insulating gas.

Key words: sulfur hexafluoride (SF6), adsorption, separation, recovery, computational fluid dynamics (CFD), numerical simulation

摘要:

SF6是一种重点控制的强温室气体。为了减少其排放,本文提出使用变温吸附(TSA)循环从混合绝缘气体中(SF6的摩尔分数为15%,N2的摩尔分数为85%)分离回收SF6。采用数值模拟方法建立了TSA循环的物理模型和数学模型,与文献实验数据对比并证明了模型的可靠性。采用3种性能评价指标(纯度、回收率、比能耗),研究不同的吸附剂材料、吸附床几何尺寸和操作条件对TSA循环性能的影响。结果表明,4种材料的循环性能最好的是Mg-MOF-74,然后是AC、UIO-66、13X。吸附剂采用Mg-MOF-74,吸附床当量长径比在6.9~23.6内时,循环性能随长径比增大而提升,纯度和回收率最高分别可达到69.31%和62.90%,比能耗最低为1.89MJ/kg。降低吸附温度和升高解吸温度有利于增大材料的SF6循环工作容量,对混合绝缘气体分离回收SF6有利。

关键词: 六氟化硫, 吸附, 分离, 回收, 计算流体力学, 数值模拟

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd