Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (10): 5652-5662.DOI: 10.16085/j.issn.1000-6613.2025-0070
• Chemical processes and equipment • Previous Articles
ZHAO Shuyi(
), ZHAO Hongkun, BU Zhicheng, JIAO Bo(
)
Received:2025-01-10
Revised:2025-03-01
Online:2025-11-10
Published:2025-10-25
Contact:
JIAO Bo
通讯作者:
焦波
作者简介:赵书艺(2000—),女,硕士研究生,研究方向为脉动热管强化传热。E-mail:18764480228m0@sina.cn。
基金资助:CLC Number:
ZHAO Shuyi, ZHAO Hongkun, BU Zhicheng, JIAO Bo. Simulation on the influence of different adiabatic length and L-shape structure on pulsating heat pipes with liquid nitrogen[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5652-5662.
赵书艺, 赵宏坤, 卜治丞, 焦波. 不同绝热段长度及L形结构对液氮脉动热管影响的模拟[J]. 化工进展, 2025, 44(10): 5652-5662.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2025-0070
| 文献 | 工质 | 蒸发段长度(Le) | 绝热段长度(La) | 冷凝段长度(Lc) | 加热功率 | 热阻最低工况 |
|---|---|---|---|---|---|---|
| Czajkowski等[ | 水 | 265mm | 500mm 750mm 1000mm | 355mm | 0~2kW | Q<2kW,Rmin:La=1000mm |
| Bao等[ | 水 | 60mm | 60mm 120mm 180mm 240mm | 60mm | 20~80kW | Q<25W,Rmin:La=240mm |
| Fonseca等[ | 氦 | 30mm | 300mm 1000mm | 90mm | 0~3W | Q<0.26W,Rmin:La=1000mm |
| Kammuang等[ | R123 | 150mm | 300mm 450mm | 355mm | 5000~35000W/m² | Q=Q,Rmin:La=300mm |
| Sukchana等[ | R123 | 100mm | 300mm 500mm 700mm | 100mm | 2~10kW/m² | q=5.92kW/m2,Rmin:La=300mm |
| Gan等[ | 液氮 | 60mm | 100mm 500mm | 60mm | 2~5W | Q<1.5W,Rmin:La=100mm |
| 文献 | 工质 | 蒸发段长度(Le) | 绝热段长度(La) | 冷凝段长度(Lc) | 加热功率 | 热阻最低工况 |
|---|---|---|---|---|---|---|
| Czajkowski等[ | 水 | 265mm | 500mm 750mm 1000mm | 355mm | 0~2kW | Q<2kW,Rmin:La=1000mm |
| Bao等[ | 水 | 60mm | 60mm 120mm 180mm 240mm | 60mm | 20~80kW | Q<25W,Rmin:La=240mm |
| Fonseca等[ | 氦 | 30mm | 300mm 1000mm | 90mm | 0~3W | Q<0.26W,Rmin:La=1000mm |
| Kammuang等[ | R123 | 150mm | 300mm 450mm | 355mm | 5000~35000W/m² | Q=Q,Rmin:La=300mm |
| Sukchana等[ | R123 | 100mm | 300mm 500mm 700mm | 100mm | 2~10kW/m² | q=5.92kW/m2,Rmin:La=300mm |
| Gan等[ | 液氮 | 60mm | 100mm 500mm | 60mm | 2~5W | Q<1.5W,Rmin:La=100mm |
| 径向网格数 | 热阻R/K·W-1 |
|---|---|
| 4×6=24 | 1.10716 |
| 6×9=54 | 1.15657 |
| 8×12=96 | 1.13118 |
| 4×6=24 | 1.14657 |
| 径向网格数 | 热阻R/K·W-1 |
|---|---|
| 4×6=24 | 1.10716 |
| 6×9=54 | 1.15657 |
| 8×12=96 | 1.13118 |
| 4×6=24 | 1.14657 |
| 轴向网格高度/mm | 热阻R/K·W-1 | 网格数量 |
|---|---|---|
| 0.2 | 1.09172 | 142954 |
| 0.4 | 1.07485 | 254251 |
| 0.6 | 1.10632 | 336652 |
| 1 | 1.13012 | 396522 |
| 1.5 | 1.42852 | 563652 |
| 2.0 | 1.51969 | 618632 |
| 轴向网格高度/mm | 热阻R/K·W-1 | 网格数量 |
|---|---|---|
| 0.2 | 1.09172 | 142954 |
| 0.4 | 1.07485 | 254251 |
| 0.6 | 1.10632 | 336652 |
| 1 | 1.13012 | 396522 |
| 1.5 | 1.42852 | 563652 |
| 2.0 | 1.51969 | 618632 |
| 绝热段长度 | 计算至准稳态所需时间(CPU: AMD EPYC 7742) |
|---|---|
| 22mm | 4天零18小时(8核) |
| 50mm | 8天零15小时(8核) |
| 100mm | 11天零6小时(10核) |
| 绝热段长度 | 计算至准稳态所需时间(CPU: AMD EPYC 7742) |
|---|---|
| 22mm | 4天零18小时(8核) |
| 50mm | 8天零15小时(8核) |
| 100mm | 11天零6小时(10核) |
| 充液率 | 各段长度 | 加热功率 | 弯头数 | 通道尺寸 | ||
|---|---|---|---|---|---|---|
| 53% | Le=13mm | La=22mm, La=50mm, La=100mm | Lc=15mm | 4~8W | 5 | 长1mm,宽0.5mm |
| 6~8W | ||||||
| 充液率 | 各段长度 | 加热功率 | 弯头数 | 通道尺寸 | ||
|---|---|---|---|---|---|---|
| 53% | Le=13mm | La=22mm, La=50mm, La=100mm | Lc=15mm | 4~8W | 5 | 长1mm,宽0.5mm |
| 6~8W | ||||||
| 参数 | 实验值 | 模拟值 |
|---|---|---|
| 蒸发段温度T/K | 84.8 | 84.4 |
| 85.9 | 85.7 | |
| 87.0 | 86.9 | |
| 88.0 | 87.9 | |
| 89.8 | 89.0 | |
| 热阻R/K·W-1 | 0.17 | 0.15 |
| 0.16 | 0.15 | |
| 0.15 | 0.15 | |
| 0.17 | 0.16 | |
| 0.18 | 0.17 |
| 参数 | 实验值 | 模拟值 |
|---|---|---|
| 蒸发段温度T/K | 84.8 | 84.4 |
| 85.9 | 85.7 | |
| 87.0 | 86.9 | |
| 88.0 | 87.9 | |
| 89.8 | 89.0 | |
| 热阻R/K·W-1 | 0.17 | 0.15 |
| 0.16 | 0.15 | |
| 0.15 | 0.15 | |
| 0.17 | 0.16 | |
| 0.18 | 0.17 |
| [1] | AKACHI H. Structure of a heat pipe: US4921041[P]. 1990-05-01. |
| [2] | ALHUYI NAZARI Mohammad, AHMADI Mohammad H, GHASEMPOUR Roghayeh, et al. A review on pulsating heat pipes: From solar to cryogenic applications[J]. Applied Energy, 2018, 222: 475-484. |
| [3] | FAZLI Mahyar, ABTAHI MEHRJARDI Seyed ALI, MAHMOUDI Ashkan, et al. Advancements in pulsating heat pipes: Exploring channel geometry and characteristics for enhanced thermal performance[J]. International Journal of Thermofluids, 2024, 22: 100644. |
| [4] | HAN Xiaohong, WANG Xuehui, ZHENG Haoce, et al. Review of the development of pulsating heat pipe for heat dissipation[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 692-709. |
| [5] | YANG Chen, TAO Qiuhua, ZHENG Jianwen, et al. Thermal evaluation of photovoltaic panels combined pulsating heat pipe with phase change materials: Numerical study and experimental validation[J]. Energy and Buildings, 2024, 303: 113806. |
| [6] | MUSHAN Sagar G, DESHMUKH Vaibhav N. A review of pulsating heat pipes encompassing their dominant factors, flexible structure, and potential applications[J]. International Journal of Green Energy, 2024, 21(11): 2559-2596. |
| [7] | 孙芹, 周国庆, 翟万领, 等. 局部多热源下拓扑优化通道平板脉动热管的传热特性[J]. 化工学报, 2025, 76(3):1006-1017. |
| SUN Qin, ZHOU Guoqing, ZHAI Wanling, et al. Heat transfer characteristics of flat pulsating heat pipe with topology optimization channel under local multi-heat sources[J]. CIESC Journal, 2025,76(3):1006-1017. | |
| [8] | TSENG Chih-Yung, YANG Kai-Shing, CHIEN Kuo-Hsiang, et al. Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters[J]. Experimental Thermal and Fluid Science, 2014, 54: 85-92. |
| [9] | TSENG Chih-Yung, YANG Kai-Shing, CHIEN Kuo-Hsiang, et al. A novel double pipe pulsating heat pipe design to tackle inverted heat source arrangement[J]. Applied Thermal Engineering, 2016, 106: 697-701. |
| [10] | KHANDEKAR Sameer, CHAROENSAWAN Piyanun, GROLL Manfred, et al. Closed loop pulsating heat pipes Part B: Visualization and semi-empirical modeling[J]. Applied Thermal Engineering, 2003, 23(16): 2021-2033. |
| [11] | MANE Kishor Vishwanath, ALEKSEIK Yevhenii. Comprehensive parametric and design review for reducing pulsating heat pipes dependence on space orientation[J]. Archives of Thermodynamics, 2024: 165-182. |
| [12] | Jaeyeong JO, KIM Jungho, KIM Sung Jin. Experimental investigations of heat transfer mechanisms of a pulsating heat pipe[J]. Energy Conversion and Management, 2019, 181: 331-341. |
| [13] | 卜治丞, 焦波, 林海花, 等. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
| BU Zhicheng, JIAO Bo, LIN Haihua, et al. Review on computational fluid dynamics(CFD) simulation and advances in pulsating heat pipes[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. | |
| [14] | 孙芹, 屈健, 袁建平. 等截面和变截面通道硅基微型脉动热管传热特性比较[J]. 化工学报, 2017, 68(5): 1803-1810, 2218. |
| SUN Qin, QU Jian, YUAN Jianping. Heat transfer performance comparison of silicon-based micro oscillating heat pipes with and without expanding channels[J]. CIESC Journal, 2017, 68(5): 1803-1810, 2218. | |
| [15] | 张东, 侯宏艺, 李庆亮, 等. 非均匀热流密度条件下脉动热管运行特性分析[J]. 华南理工大学学报(自然科学版), 2022, 50(7): 126-135. |
| ZHANG Dong, HOU Hongyi, LI Qingliang, et al. Analysis of operation characteristics of pulsating heat pipe under the condition of non-uniform heat flux[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(7): 126-135. | |
| [16] | WENG Zhenchuan, DU Juan, JIAO Feng, et al. Experimental investigation on the heat transfer performance of pulsating heat pipe with self-rewetting Fe3O4-nanofluid[J]. Case Studies in Thermal Engineering, 2024, 59: 104456. |
| [17] | 包康丽. 热传输距离对不同工作流体脉动热管工作特性影响的研究[D]. 杭州: 浙江大学, 2023. |
| BAO Kangli. Study on the effects of heat transfer distance on the operating characteristics of pulsating heat pipe with different working fluids[D]. Hangzhou: Zhejiang University, 2023. | |
| [18] | 郭子瑞, 王家伟, 池日光, 等. L形脉动热管电池包的传热性能数值研究[J]. 哈尔滨商业大学学报(自然科学版), 2024, 40(5): 566-571. |
| GUO Zirui, WANG Jiawei, CHI Riguang, et al. Numerical study on heat tranfer performance of L-shaped pulsating heat pipe tube battery pack[J].The Journal of Harbin University of Commerce (Natural Sciences Edition), 2024, 40(5): 566-571. | |
| [19] | CZAJKOWSKI Cezary, NOWAK Andrzej I, Przemysław BŁASIAK, et al. Experimental study on a large scale pulsating heat pipe operating at high heat loads, different adiabatic lengths and various filling ratios of acetone, ethanol, and water[J]. Applied Thermal Engineering, 2020, 165: 114534. |
| [20] | BAO Kangli, ZHUANG Yuan, GAO Xu, et al. Transient numerical model on the design optimization of the adiabatic section length for the pulsating heat pipe[J]. Applied Sciences, 2021, 11(20): 9432. |
| [21] | FONSECA Luis Diego, PFOTENHAUER John, MILLER Franklin. Short communication: Thermal performance of a cryogenic helium pulsating heat pipe with three evaporator sections[J]. International Journal of Heat and Mass Transfer, 2018, 123: 655-656. |
| [22] | FONSECA Luis Diego, PFOTENHAUER John, MILLER Franklin. Results of a three evaporator cryogenic helium Pulsating Heat Pipe[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1275-1286. |
| [23] | Niti KAMMUANG-LUE, SAKULCHANGSATJATAI Phrut, TERDTOON Pradit. Thermal performance of various adiabatic section lengths of closed-loop pulsating heat pipe designed for energy recovery applications[J]. Energy Reports, 2022, 8: 731-737. |
| [24] | SUKCHANA Thanaphol, JAIBOONMA Chaiyun. Effect of filling ratios and adiabatic length on thermal efficiency of long heat pipe filled with R-134a[J]. Energy Procedia, 2013, 34: 298-306. |
| [25] | GAN Zhihua, SUN Xiao, JIAO Bo, et al. Experimental study on a hydrogen closed loop pulsating heat pipe with different adiabatic lengths[J]. Heat Transfer Engineering, 2019, 40(3/4): 205-214. |
| [26] | 白雪玉. 部分水平结构脉动热管的性能研究[D]. 天津: 天津大学, 2018. |
| BAI Xueyu. Investigation of pulsating heat pipe with partial horizontal structure[D]. Tianjin: Tianjin University, 2018. | |
| [27] | CZAJKOWSKI Cezary, NOWAK Andrzej I, Sławomir PIETROWICZ. Flower Shape Oscillating Heat Pipe—A novel type of oscillating heat pipe in a rotary system of coordinates—An experimental investigation[J]. Applied Thermal Engineering, 2020, 179: 115702. |
| [28] | CHEN Yang, HE Yongqing, ZHU Xiaoqin. Flower-type pulsating heat pipe for a solar collector[J]. International Journal of Energy Research, 2020, 44(9): 7734-7745. |
| [29] | Kritsada ON-AI, Niti KAMMUANG-LUE, TERDTOON Pradit, et al. Implied physical phenomena of rotating closed-loop pulsating heat pipe from working fluid temperature[J]. Applied Thermal Engineering, 2019, 148: 1303-1309. |
| [30] | LIU Ying, BAO Kangli, YAN Yuhao, OUYANG Hongshen, HAN Xiaohong. Investigation on the influence of different heat transmission distances on thermo-hydrodynamic characteristics of pulsating heat pipes[J]. Applied Thermal Engineering, 2023, 234: 1359-4311. |
| [31] | FONSECA Luis Diego, MILLER Franklin, PFOTENHAUER John. Experimental heat transfer analysis of a cryogenic nitrogen pulsating heat Pipe at various liquid fill ratios[J]. Applied Thermal Engineering, 2018, 130: 343-353. |
| [32] | BRUCE Romain, BARBA Maria, BONELLI Antoine, et al. Thermal performance of a meter-scale horizontal nitrogen pulsating heat pipe[J]. Cryogenics, 2018, 93: 66-74. |
| [33] | LI Yi, WANG Qiuliang, CHEN Shunzhong, et al. Experimental investigation of the characteristics of cryogenic oscillating heat pipe[J]. International Journal of Heat and Mass Transfer, 2014, 79: 713-719. |
| [34] | SAGAR Kalpak R, NAIK H B, MEHTA Hemantkumar B. Numerical study of liquid nitrogen based pulsating heat pipe for cooling superconductors[J]. International Journal of Refrigeration, 2021, 122: 33-46. |
| [35] | SAGAR Kalpak R, NAIK H B, MEHTA Hemantkumar B. CFD analysis of cryogenic pulsating heat pipe with near critical diameter under varying gravity conditions[J]. Theoretical Foundations of Chemical Engineering, 2020, 54(1): 64-76. |
| [36] | LI Sizhuo, BU Zhicheng, FANG Tiegen, et al. Experimental study on the thermo-hydrodynamic characteristics of a nitrogen pulsating heat pipe[J]. International Communications in Heat and Mass Transfer, 2023, 146: 106920. |
| [37] | 李思卓. 液氮温区脉动热管流动特性及传热机理研究[D]. 杭州: 浙江大学, 2023. |
| LI Sizhuo. Study on flow characteristics and heat transfer mechanism of pulsating heat pipe at liquid nitrogen temperature range[D]. Hangzhou: Zhejiang University, 2023. | |
| [38] | 卜治丞, 李思卓, 焦波, 等. 不同冷凝段温度下液氮脉动热管可视化实验研究[J]. 化工学报, 2023, 74(12): 4892-4903. |
| BU Zhicheng, LI Sizhuo, JIAO Bo, et al. Visualization study on a nitrogen pulsating heat pipe under different condenser temperatures[J]. CIESC Journal, 2023, 74(12): 4892-4903. | |
| [39] | BU Zhicheng, LI Sizhou, ZHAO Shuyi, et al. Thermo-hydrodynamic analysis of a nitrogen flat-plate pulsating heat pipe using CFD modeling and visualization experiments[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108029. |
| [40] | 何欣. 超临界管径脉动热管单向循环流动下理论及实验研究[D]. 大连: 大连海事大学, 2024. |
| HE Xin. Theoretical and experimental research on unidirectional circulating flow in supercritical oscillating heat pipe[D]. Dalian: Dalian Maritime University, 2024. | |
| [41] | 孙潇. 液氢温区脉动热管高效传热理论及实验研究[D]. 杭州: 浙江大学, 2021. |
| SUN Xiao. Study on efficient heat transfer performance of pulsating heat pipe at liquid hydrogen temperature range[D]. Hangzhou: Zhejiang University, 2021. | |
| [42] | YE Mengting, XIANG Daoping, GUI Ziyu. Thermal conductivity enhancement of epoxy by a 3D Si3N4 crystal rod/grain skeleton fabricating from photovoltaic silicon waste[J]. Ceramics International, 2024, 50(24): 53780-53789. |
| [1] | LU Yucheng, HUANG Tao, LUO Yajun, LIU Jiahui, GONG Feiyan, YAN Chaoyu, LIU Xiaoxing. CFD modeling of gas-liquid-solid mixing characteristics in stirred tank for water-suspension granulation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4556-4566. |
| [2] | XU Wenjun, ZHANG Jianbo, GUO Yanxia, LI Huiquan, LI Shaopeng, REN Yiling. Effects of anchor frame impeller structure on flow field in stirred tank during gasification slag activation [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4463-4477. |
| [3] | LI Ka, XIA Yuxuan, WU Xiaoqin, YI Lan, LUO Hao. Pore scale computational fluid dynamics (CFD) simulation of a double-layer porous medium combustion reactor [J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4381-4393. |
| [4] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
| [5] | YAN Xingqing, DAI Xingtao, YU Jianliang, LI Yue, HAN Bing, HU Jun. Research progress of high-pressure hydrogen leakage and jet flow [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1118-1128. |
| [6] | YU Yanfang, LI Yu, MENG Huibo, LIU Huanchen. Enhancement of gas-liquid flow mixing and mass transfer in Lightnin static mixer [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6180-6190. |
| [7] | LIU Shaobin, QI Hong, YU Zhiqiang, HE Mingjian, YU Xikui. Performance analysis and parameter optimization of mini-channel using Taguchi method [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6409-6422. |
| [8] | SUN Jingchen, LIU Hailong, WANG Junfeng, HE Fachao. Flow visualization by PLIF technique and numerical modeling of mixing enhancement in stirred tank under electric fields [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6547-6556. |
| [9] | MENG Huibo, LIU Zhenjiang, YU Yanfang, ZHANG Ping, WU Jianhua. Computational simulation of liquid-liquid two-phase mixing characteristics in the circulating jet tank [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5939-5948. |
| [10] | TANG Qi, BAO Di, SHAO Shaoxiong, XU Ping, LIU Lianwei, ZHENG Weiming. Three-phase fluid dynamics simulation of ionic liquid system in mixer-settler [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5468-5479. |
| [11] | Yizhi YAO,Yuqiang DAI,Bowen ZHANG,Chuang YU,Mohan LI. Performance experiment and analysis of momentum-enhanced ejector [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4489-4496. |
| [12] | ZHANG Chang, XIE Rongjian, SUN Qi, ZHANG Tian, WU Yinong, HONG Fangjun. Start-up and heat transfer performance of a nitrogen cryogenic axial Ω shape grooved heat pipe [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2610-2617. |
| [13] | WANG Ruixiang, YAN Mengfei, XU Rongji, XING Meibo. Influences of normalizing pretreatment on the start-up time of pulsating heat pipe [J]. Chemical Industry and Engineering Progress, 2018, 37(06): 2116-2124. |
| [14] | ZHANG Yuemei, HUANG Guoqiang, SU Guoliang. Experiment and simulation on the flow characteristics of silicon particles with a wide size distribution in draft tube spout-fluid bed [J]. Chemical Industry and Engineering Progress, 2017, 36(07): 2381-2392. |
| [15] | DENG Liwen, XU Songlin. Characteristics of heat transfer and wall optimization in the wiped film molecular distiller [J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2685-2692. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |