Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2238-2249.DOI: 10.16085/j.issn.1000-6613.2024-0630

• Materials science and technology • Previous Articles     Next Articles

Microwave electromagnetic characteristics and microwave absorbing properties of foam silicon carbide carrier

HUANG Yuedong1,2(), GAO Botao1,3, YANG Li1,2,3, YAO Siyu4, GUO Shenghui1,2,3, HOU Ming1,2,3()   

  1. 1.College of Metallurgy and Energy Engineering, Kunming University of Technology, Kunming 650093, Yunnan, China
    2.National and Local Joint Engineering Laboratory for Microwave Energy Engineering Application and Equipment Technology, Kunming 650093, Yunnan, China
    3.State Key Laboratory for Clean Utilization of Complex Nonferrous Metal Resources, Kunming 650093, Yunnan, China
    4.College of Chemical Engineering and Bioengineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
  • Received:2024-04-14 Revised:2024-05-29 Online:2025-05-07 Published:2025-04-25
  • Contact: HOU Ming

泡沫碳化硅载体的微波电磁特性及吸波性能

黄粤东1,2(), 高博涛1,3, 杨黎1,2,3, 姚思宇4, 郭胜惠1,2,3, 侯明1,2,3()   

  1. 1.昆明理工大学冶金与能源工程学院,云南 昆明 650093
    2.微波能工程应用和装备技术国家地方联合工程 实验室,云南 昆明 650093
    3.复杂有色金属资源清洁利用国家重点实验室,云南 昆明 650093
    4.浙江大学 化学工程与生物工程学院,浙江 杭州 310058
  • 通讯作者: 侯明
  • 作者简介:黄粤东(1998—),女,硕士研究生,研究方向为微波材料新技术。E-mail:595689849@qq.com
  • 基金资助:
    国家重点研发计划(2022YFB4003100);国家自然科学基金(52364051)

Abstract:

Foam silicon carbide with different pore density and porosity was prepared by organic foam impregnation method, and its phase composition and microstructure were analyzed by XRD, SEM, BET and other testing methods. In order to explore the influence of temperature and pore structure on the electromagnetic characteristics and wave absorption performance of foam silicon carbide, the dielectric parameters of samples with different pore structure from room temperature to 400℃ were measured by using the resonant cavity perturbation technique. The temperature rising behavior of foam silicon carbide with different pore structure was measured by using self-developed microwave tube furnace. The reflection loss of materials was tested using a vector network analyzer. The results showed that the real part of the complex dielectric constant of the prepared samples increased with the increase of temperature, and the highest real part value reached 6.72 at 400℃. As the pore density and porosity increased, the loss tangents of the samples increased with a maximum value of 0.037 at 400℃. The heating rate of the samples increased with the increase of power, pore density and porosity, reaching a maximum of 65.4℃/min at 1400W. The reflection loss of foam silicon carbide decreased regularly with the increase of pore density and porosity, and the minimum value was -12.8dB. The results showed that temperature and pore structure had a great influence on the electromagnetic properties and wave absorption properties of the samples. The higher the pore density and porosity, the stronger the wave absorption properties of foam silicon carbide. This work systematically studied the effects of pore structure and temperature on the microwave absorbing properties of foam silicon carbide, providing theoretical guidance for the research of microwave electromagnetic properties in the field of porous materials.

Key words: foam silicon carbide, pore structure, electromagnetic characteristics, absorbing performance, absorption mechanism

摘要:

采用有机泡沫浸渍法制备了不同孔隙密度和孔隙率的泡沫碳化硅,并采用XRD、SEM、BET等测试手段分析了其物相组成和微观形貌结构等。为探究温度和孔结构对泡沫碳化硅电磁特性和吸波性能的影响,利用谐振腔微扰技术测试不同孔结构的样品从室温至400℃的介电参数;利用自主研制微波管式炉测试不同孔结构泡沫碳化硅的升温行为;通过矢量网络分析仪测试材料的反射损耗。结果显示,所制备的样品的复介电常数的实部都随着温度的升高而增大,在400℃时,实部最高值可达6.72;随着孔隙密度和孔隙率的增加,样品的损耗角正切增大,400℃时其最大值为0.037。样品的升温速率随着功率及孔隙密度和孔隙率的增大而增大,在1400W下最高可达65.4℃/min;泡沫碳化硅的反射损耗随着孔隙密度和孔隙率的增大而呈规律性减小,最小值为-12.8dB。表明温度和孔结构对样品的电磁特性和吸波性能都有很大影响,孔隙密度和孔隙率越大,泡沫碳化硅的吸波性能越强。本文系统研究了孔结构和温度对泡沫碳化硅吸波性能的影响,为多孔材料领域的微波电磁性能研究提供理论性指导。

关键词: 泡沫碳化硅, 孔结构, 电磁特性, 吸波性能, 吸波机理

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd