Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (4): 2238-2249.DOI: 10.16085/j.issn.1000-6613.2024-0630
• Materials science and technology • Previous Articles Next Articles
HUANG Yuedong1,2(
), GAO Botao1,3, YANG Li1,2,3, YAO Siyu4, GUO Shenghui1,2,3, HOU Ming1,2,3(
)
Received:2024-04-14
Revised:2024-05-29
Online:2025-05-07
Published:2025-04-25
Contact:
HOU Ming
黄粤东1,2(
), 高博涛1,3, 杨黎1,2,3, 姚思宇4, 郭胜惠1,2,3, 侯明1,2,3(
)
通讯作者:
侯明
作者简介:黄粤东(1998—),女,硕士研究生,研究方向为微波材料新技术。E-mail:595689849@qq.com。
基金资助:CLC Number:
HUANG Yuedong, GAO Botao, YANG Li, YAO Siyu, GUO Shenghui, HOU Ming. Microwave electromagnetic characteristics and microwave absorbing properties of foam silicon carbide carrier[J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2238-2249.
黄粤东, 高博涛, 杨黎, 姚思宇, 郭胜惠, 侯明. 泡沫碳化硅载体的微波电磁特性及吸波性能[J]. 化工进展, 2025, 44(4): 2238-2249.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2024-0630
| 样品 | 孔隙密度/PPI | 孔隙率/% |
|---|---|---|
| S1 | 15 | 80±0.5 |
| S2 | 30 | 80±0.5 |
| S3 | 45 | 80±0.5 |
| S4 | 60 | 80±0.5 |
| S5 | 30 | 85±0.5 |
| S6 | 30 | 90±0.5 |
| 样品 | 孔隙密度/PPI | 孔隙率/% |
|---|---|---|
| S1 | 15 | 80±0.5 |
| S2 | 30 | 80±0.5 |
| S3 | 45 | 80±0.5 |
| S4 | 60 | 80±0.5 |
| S5 | 30 | 85±0.5 |
| S6 | 30 | 90±0.5 |
| 样品 | 最可几孔径/nm | BET比表面积/m2·g-1 |
|---|---|---|
| S1 | 16.995 | 2.943 |
| S2 | 16.999 | 2.910 |
| S3 | 19.099 | 3.381 |
| S4 | 21.509 | 4.100 |
| 样品 | 最可几孔径/nm | BET比表面积/m2·g-1 |
|---|---|---|
| S1 | 16.995 | 2.943 |
| S2 | 16.999 | 2.910 |
| S3 | 19.099 | 3.381 |
| S4 | 21.509 | 4.100 |
| 样品 | 最大介电实部 | 最小反射损耗/dB | 参考文献 |
|---|---|---|---|
| 泡沫SiC/C | 5.10 | -20.00 | [ |
| 泡沫SiC/C(AMM) | 6.80 | -35.70 | [ |
| 泡沫NA/3DCF-1 | 13.50 | -39.72 | [ |
| 泡沫SiC-Si3N4 | 6.80 | -23.50 | [ |
| 泡沫Ni/C@SiC | 9.60 | -25.87 | [ |
| 泡沫SiC@Ti3SiC2-10 | 12.10 | -68.59 | [ |
| 泡沫SiC@Si/SiO2 | 22.5 | -51.10 | [ |
| 泡沫SiC | 6.72 | -12.8 | 本工作 |
| 样品 | 最大介电实部 | 最小反射损耗/dB | 参考文献 |
|---|---|---|---|
| 泡沫SiC/C | 5.10 | -20.00 | [ |
| 泡沫SiC/C(AMM) | 6.80 | -35.70 | [ |
| 泡沫NA/3DCF-1 | 13.50 | -39.72 | [ |
| 泡沫SiC-Si3N4 | 6.80 | -23.50 | [ |
| 泡沫Ni/C@SiC | 9.60 | -25.87 | [ |
| 泡沫SiC@Ti3SiC2-10 | 12.10 | -68.59 | [ |
| 泡沫SiC@Si/SiO2 | 22.5 | -51.10 | [ |
| 泡沫SiC | 6.72 | -12.8 | 本工作 |
| 1 | 杨振明, 田冲, 矫义来, 等. 泡沫碳化硅的制备及应用[J]. 化学反应工程与工艺, 2013, 29(3): 269-275. |
| YANG Zhenming, TIAN Chong, JIAO Yilai, et al. Preparation and applications of foam SiC[J]. Chemical Reaction Engineering and Technology, 2013, 29(3): 269-275. | |
| 2 | WU Songze, ZHOU Yang, GAO Wen, et al. Preparation and properties of shape-stable phase change material with enhanced thermal conductivity based on SiC porous ceramic carrier made of iron tailings[J]. Applied Energy, 2024, 355: 122256. |
| 3 | SEDANOVA E P, KASHKAROV E B, LIDER A M, et al. Porous SiC ceramic obtained by spark plasma sintering of preceramic paper: Microstructure, mechanical properties and gas permeability[J]. Ceramics International, 2024, 50(8): 12950-12959. |
| 4 | WANG Zhen, LIU Jingxiang, HAO Haoquan, et al. Microwave absorption enhancement by SiC nanowire aerogels through heat treatment-based oxidation modulation[J]. Carbon, 2024, 217: 118622. |
| 5 | WU Meihong, GAO Mingxia, QU Shanqing, et al. LiBH4 hydrogen storage system with low dehydrogenation temperature and favorable reversibility promoted by metallocene additives[J]. Journal of Energy Storage, 2023, 72: 108679. |
| 6 | 王新瑞, 龚业磊, 姚军龙, 等. 碳化硅/氮化硅/聚丙烯复合材料的制备及介电性能研究[J]. 化肥设计, 2018, 56(4): 12-15. |
| WANG Xinrui, GONG Yelei, YAO Junlong, et al. Preparation and dielectric performance studies of SiC/Si3N4/PP composite materials[J]. Chemical Fertilizer Design, 2018, 56(4): 12-15. | |
| 7 | HANNA S B, AWAAD M, AJIBA N A. Optimization of a novel process for preparation of silicon carbide foams[J]. Materials Chemistry and Physics, 2018, 218: 77-86. |
| 8 | 杨振明, 姜春海, 田冲, 等. 泡沫碳化硅陶瓷表面纳米多孔碳化硅涂层的制备[J]. 功能材料, 2012, 43(21): 2893-2896. |
| YANG Zhenming, JIANG Chunhai, TIAN Chong, et al. Preparation of nanoporous SiC coating on SiC foam[J]. Journal of Functional Materials, 2012, 43(21): 2893-2896. | |
| 9 | 谌伟, 闫洪. 莫来石/碳化硅复相泡沫陶瓷的制备及抗压强度研究[J]. 稀有金属, 2015, 39(4): 331-336. |
| CHEN Wei, YAN Hong. Preparation and compressive strengths of mullite/SiC composite ceramic foams[J]. Chinese Journal of Rare Metals, 2015, 39(4): 331-336. | |
| 10 | 曹小明, 金鹏, 徐奕辰, 等. 碳化硅泡沫陶瓷/铝双连续相复合材料结构特征及增强机制[J]. 复合材料学报, 2022, 39(4): 1771-1777. |
| CAO Xiaoming, JIN Peng, XU Yichen, et al. Structural feature and reinforcement mechanism of silicon carbide foam ceramics aluminum matrix co-continuous phase composites[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1771-1777. | |
| 11 | 许思奇. 碳化硅泡沫多孔材料内流动及换热特性实验和数值模拟研究[D]. 北京: 北京交通大学, 2022. |
| XU Siqi. Experimental and numerical simulation study on internal flow and heat transfer characteristics of SiC foam porous material[D]. Beijing: Beijing Jiaotong University, 2022. | |
| 12 | 张洋, 高鑫, 严鹏, 等. 泡沫碳化硅填料孔内流体微观流动特性研究[J]. 现代化工, 2021, 41(9): 192-196. |
| ZHANG Yang, GAO Xin, YAN Peng, et al. Microscopic experimental characterization of liquid flow in hole of SiC foam packings[J]. Modern Chemical Industry, 2021, 41(9): 192-196. | |
| 13 | 王辰晨. 泡沫碳化硅填料内的流场模拟及结构优化[D]. 天津: 天津大学, 2014. |
| WANG Chenchen. CFD simulation and structure optimization of foam SiC structure packing[D]. Tianjin: Tianjin University, 2014. | |
| 14 | MONCADA QUINTERO Carmen W, ERCOLINO Giuliana, SPECCHIA Stefania. Combined silicon carbide and zirconia open cell foams for the process intensification of catalytic methane combustion in lean conditions: Impact on heat and mass transfer[J]. Chemical Engineering Journal, 2022, 429: 132448. |
| 15 | VOGT U F, GYÖRFY L, HERZOG A, et al. Macroporous silicon carbide foams for porous burner applications and catalyst supports[J]. Journal of Physics and Chemistry of Solids, 2007, 68(5/6): 1234-1238. |
| 16 | Xiaoxia OU, TOMATIS Marco, LAN Yongyong, et al. A novel microwave-assisted methanol-to-hydrocarbons process with a structured ZSM-5/SiC foam catalyst: Proof-of-concept and environmental impacts[J]. Chemical Engineering Science, 2022, 255: 117669. |
| 17 | LI Wanchong, LI Chusen, LIN Lihai, et al. Foam structure to improve microwave absorption properties of silicon carbide/carbon material[J]. Journal of Materials Science & Technology, 2019, 35(11): 2658-2664. |
| 18 | KUMARI Saroj, KUMAR Rajeev, AGRAWAL Pinki R, et al. Fabrication of lightweight and porous silicon carbide foams as excellent microwave susceptor for heat generation[J]. Materials Chemistry and Physics, 2020, 253: 123211. |
| 19 | LI Wanchong, LI Chusen, LIN Lihai, et al. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material[J]. Journal of Alloys and Compounds, 2019, 781: 883-891. |
| 20 | ZHOU Nan, LIU Shiyu, ZHANG Yaning, et al. Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass[J]. Bioresource Technology, 2018, 267: 257-264. |
| 21 | TAN Ruiyang, ZHOU Jintang, YAO Zhengjun, et al. A low-cost lightweight microwave absorber: Silicon carbide synthesized from tissue[J]. Ceramics International, 2021, 47(2): 2077-2085. |
| 22 | CAMACHO HERNANDEZ Jesus Nain, LINK Guido, SOLDATOV Sergey, et al. Experimental and numerical analysis of the complex permittivity of open-cell ceramic foams[J]. Ceramics International, 2020, 46(17): 26829-26840. |
| 23 | WEI Bo, WANG Mengqing, YAO Zhengjun, et al. Bimetallic nanoarrays embedded in three-dimensional carbon foam as lightweight and efficient microwave absorbers[J]. Carbon, 2022, 191: 486-501. |
| 24 | ZHANG Huihui, LIU Huan, WU Haibo, et al. Microwave absorbing property of gelcasting SiC-Si3N4 ceramics with hierarchical pore structures[J]. Journal of the European Ceramic Society, 2022, 42(4): 1249-1257. |
| 25 | LI Xiangming, ZHANG Litong, YIN X, et al. Mechanical and dielectric properties of porous Si3N4-SiC(BN) ceramic[J]. Journal of Alloys & Compounds, 2010, 490(1/2): L40-L43. |
| 26 | YE Xinli, ZHANG Junxiong, CHEN Zhaofeng, et al. Microwave absorption properties of Ni/C@SiC composites prepared by precursor impregnation and pyrolysis processes[J]. Defence Technology, 2023, 21: 94-102. |
| 27 | ZHONG Zhaoxin, ZHANG Biao, YE Jian, et al. Tailorable microwave absorption properties of macro-porous core@shell structured SiC@Ti3SiC2 via molten salt shielded synthesis (MS3) method in air[J]. Journal of Alloys and Compounds, 2022, 927: 167046. |
| 28 | LAN Xiaolin, LI Yibin, WANG Zhijiang. High-temperature electromagnetic wave absorption, mechanical and thermal insulation properties of in situ grown SiC on porous SiC skeleton[J]. Chemical Engineering Journal, 2020, 397(29): 125250. |
| 29 | SRIRAM S, SIERGIEJ R R, CLARKE R C, et al. SiC for microwave power transistors[J]. Physica Status Solidi (a), 1997, 162(1): 441-457. |
| 30 | CERNEAUX Sophie, XIONG Xiangyuan, SIMON George P, et al. Sol-gel synthesis of SiC-TiO2 nanoparticles for microwave processing[J]. Nanotechnology, 2007, 18(5): 055708. |
| 31 | OGHBAEI Morteza, MIRZAEE Omid. Microwave versus conventional sintering: A review of fundamentals, advantages and applications[J]. ChemInform, 2010, 41(1/2): 175-189. |
| 32 | RAJKUMAR K, ARAVINDAN S. Microwave sintering of copper-graphite composites[J]. Journal of Materials Processing Technology, 2009, 209(15/16): 5601-5605. |
| 33 | RAMESH Peelamedu D, BRANDON David, Levi SCHÄCHTER. Use of partially oxidized SiC particle bed for microwave sintering of low loss ceramics[J]. Materials Science and Engineering: A, 1999, 266(1/2): 211-220. |
| 34 | LASRI Jacob, RAMESH Peelamedu D, Levi SCHÄCHTER. Energy conversion during microwave sintering of a multiphase ceramic surrounded by a susceptor[J]. Journal of the American Ceramic Society, 2000, 83(6): 1465-1468. |
| 35 | WU Tong, LIU Yun, ZENG Xiang, et al. Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7370-7380. |
| 36 | MILES P A, WESTPHAL W B, VON HIPPEL A. Dielectric spectroscopy of ferromagnetic semiconductors[J]. Reviews of Modern Physics, 1957, 29(3): 279-307. |
| 37 | CHENG Yan, CAO Jieming, LI Yong, et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1427-1435. |
| 38 | LIANG Caiyun, WANG Zhenfeng, WU Lina, et al. Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures[J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29950-29957. |
| [1] | JING Lingyun, LIU Shasha, ZHANG Zeqiang, LIU Guanglong, JIANG Li, SUN Zhili, HU Yeqiang, HAO Pengbo, ZHENG Yinqin, YANG Hui. ZnO promotes the degradation of levofloxacin in water by hierarchical porous ZIF-8 derived Co-Ni-N-C activated PMS [J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1683-1694. |
| [2] | LI Zhixing, DAI Weijiong, LIU Xiangyang, WANG Fei, LI Ruifeng. Insight into structure and reactivity of ZSM-5 [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 788-808. |
| [3] | HUANG Kun, XU Ming, WU Xiujuan, PEI Sijia, LIU Dawei, MA Xiaoxun, XU Long. Research progress on preparation and microstructural characteristics regulation of biomass activated carbon [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2475-2493. |
| [4] | WANG Darui, SUN Hongmin, WANG Yiyan, TANG Zhimou, LI Rui, FAN Xueyan, YANG Weimin. Recent progress in zeolite for efficient catalytic reaction process [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 1-18. |
| [5] | LIU Peihui, LIU Yuzhe, LI Lin, WANG Shaohui, WANG Tonghua. Activation strategies of the porous carbon with high specific surface area and hierarchical pore structure and its VOCs adsorption performance [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 613-621. |
| [6] | WANG Luyuan, JIN Chunjiang, CHEN Huimin, CHENG Xingxing, AN Donghai, ZHANG Xingyu, SUN Rongfeng, GENG Wenguang. Preparation of nano-lignin-based porous carbon materials by one-step pyrolysis activation method [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2582-2592. |
| [7] | WU Chenhao, LI Kunfeng, LI Xiaohua, FEI Zhifang, ZHANG Zhen, YANG Zichun. Research progress on preparation of silica aerogels at ambient pressure drying [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 837-847. |
| [8] | DONG Huanhuan, LI Hong, JIAO Yilai, LI Xingang, GAO Xin. Influence of porous foam media on gas-liquid equilibrium of binary system [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 67-74. |
| [9] | ZHENG Chao, KANG Kai, ZHOU Shuyuan, SONG Hua, BAI Shupei. Adsorption behavior of water molecules on porous carbon materials [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3803-3812. |
| [10] | Shijie LI,Kuihua HAN. Synergistic optimization of pore structure and electrochemical properties of activated carbon [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 287-293. |
| [11] | Deqian LIU,Qiang XIE,Chaoran WAN,Feng DENG,Xiaoqing HUANG,ZHAI Xiaodi. Adsorption properties of blending activated carbons and their relationship with pore structure [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5578-5586. |
| [12] | Xiangqian ZHANG, Bin HE, Xiaoling DONG, Chengyu YE, Anhui LU. Design and synthesis of porous carbon materials for energy storage [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 404-420. |
| [13] | ZHOU Hui, ZHENG Jun, HU Dawei, ZHANG Chuanqing, LU Jingjing, GAO Yang. Effect of CO2 erosion on the pore structure of cement-based materials in water soaking and moist environment [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4791-4798. |
| [14] | ZHANG Mengmeng, CHEN Xiongmu, LI Lingxiao, ZHAO Fengqing. Preparation and characterization of micro/mesoporous activated carbon from denitrided residue of waste penicillin mycelium [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4773-4781. |
| [15] | WANG Shengqi, ZHENG Jiayi, YU Yanshun. Influence of pore structure on the heat transfer characteristics of fractal metal foam filled with phase change material [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3540-3546. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |