Chemical Industry and Engineering Progress ›› 2025, Vol. 44 ›› Issue (1): 549-557.DOI: 10.16085/j.issn.1000-6613.2023-2249
• Resources and environmental engineering • Previous Articles Next Articles
ZOU Yan1(), LIN Wei2, YANG Wei1, ZHANG Yanrong1(
)
Received:
2023-12-22
Revised:
2024-02-06
Online:
2025-02-13
Published:
2025-01-15
Contact:
ZHANG Yanrong
通讯作者:
张延荣
作者简介:
邹燕(1999—),女,硕士研究生,研究方向为硫化氢选择性氧化。E-mail: Zou_yyan@163.com。
基金资助:
CLC Number:
ZOU Yan, LIN Wei, YANG Wei, ZHANG Yanrong. Optimization of wet desulfurization process with iron chelates[J]. Chemical Industry and Engineering Progress, 2025, 44(1): 549-557.
邹燕, 林蔚, 杨威, 张延荣. 络合铁湿式氧化硫化氢工艺及优化[J]. 化工进展, 2025, 44(1): 549-557.
1 | SHAH Mansi S, TSAPATSIS Michael, Ilja SIEPMANN J. Hydrogen sulfide capture: From absorption in polar liquids to oxide, zeolite, and metal-organic framework adsorbents and membranes[J]. Chemical Reviews, 2017, 117(14): 9755-9803. |
2 | OLSSON Linda, FALLDE Magdalena. Waste(d) potential: A socio-technical analysis of biogas production and use in Sweden[J]. Journal of Cleaner Production, 2015, 98: 107-115. |
3 | CHEIN Reiyu, YANG Zengwei. H2S effect on dry reforming of biogas for syngas production[J]. International Journal of Energy Research, 2019, 43(8): 3330-3345. |
4 | 钱东升, 房俊逸, 陈东之, 等. 板式生物滴滤塔高效净化硫化氢废气的研究[J]. 环境科学, 2011, 32(9): 2786-2793. |
QIAN Dongsheng, FANG Junyi, CHEN Dongzhi, et al. Removal of hydrogen sulfide by plate type-biotrickling filter[J]. Environmental Science, 2011, 32(9): 2786-2793. | |
5 | LIU Dongjing, LI Bin, WU Jiang, et al. Sorbents for hydrogen sulfide capture from biogas at low temperature: A review[J]. Environmental Chemistry Letters, 2020, 18(1): 113-128. |
6 | YANG Can, YE Hanfeng, BYUN Jeehye, et al. N-rich carbon catalysts with economic feasibility for the selective oxidation of hydrogen sulfide to sulfur[J]. Environmental Science & Technology, 2020, 54(19): 12621-12630. |
7 | 刘岱, 陈绍云, 黄纯洁, 等. Ce-Cu-Al-O复合金属氧化物吸附剂低温脱除H2S[J]. 化工进展, 2016, 35(11): 3701-3706. |
LIU Dai, CHEN Shaoyun, HUANG Chunjie, et al. Study of low temperature H2S removal on Ce-Cu-Al-O mixed metal oxide adsorbents[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3701-3706. | |
8 | BU Hao, CARVALHO Gilda, HUANG Casey, et al. Evaluation of continuous and intermittent trickling strategies for the removal of hydrogen sulfide in a biotrickling filter[J]. Chemosphere, 2022, 291: 132723. |
9 | LIU Dongjing, ZHOU Weiguo, WU Jiang. CeO2-MnO x /ZSM-5 sorbents for H2S removal at high temperature[J]. Chemical Engineering Journal, 2016, 284: 862-871. |
10 | 范伟. 高硫容铁基催化剂天然气脱硫实验研究[J]. 天然气化工, 2018, 43(5): 99-105. |
FAN Wei. Experimental study on desulfurization of natural gas with high sulfur capacity iron-based catalyst[J]. Natural Gas Chemical Industry, 2018, 43(5): 99-105. | |
11 | CHUICHULCHERM Sinsupha, KASICHAN Nathathai, SRINOPHAKUN Penjit, et al. The use of ozone in a continuous cyclical swing mode regeneration of Fe-EDTA for a clean biogas process from a swine farm waste[J]. Journal of Cleaner Production, 2017, 142: 1267-1273. |
12 | DE ANGELIS A. Natural gas removal of hydrogen sulphide and mercaptans[J]. Applied Catalysis B: Environmental, 2012, 113: 37-42. |
13 | 李飞, 谷小虎, 王旭峰, 等. 新型络合铁催化剂在焦炉煤气净化中的研究[J]. 现代化工, 2021, 41(7): 225-227. |
LI Fei, GU Xiaohu, WANG Xufeng, et al. Application of new complex iron catalyst in coke oven gas purification[J]. Modern Chemical Industry, 2021, 41(7): 225-227. | |
14 | MA Yiwen, CHEN Zezhi, GONG Huijuan. Study on selective hydrogen sulfide removal over carbon dioxide by catalytic oxidative absorption method with chelated iron as the catalyst[J]. Renewable Energy, 2016, 96: 1119-1126. |
15 | PANDEY R A, MALHOTRA S. Desulfurization of gaseous fuels with recovery of elemental sulfur: An overview[J]. Critical Reviews in Environmental Science and Technology, 1999, 29(3): 229-268. |
16 | LIMTRAKUL Sunun, ROJANAMATIN Sudtida, VATANATHAM Terdthai, et al. Gas-lift reactor for hydrogen sulfide removal[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 6115-6122. |
17 | DEMMINK J F, BEENACKERS A A C M. Gas desulfurization with ferric chelates of EDTA and HEDTA: New model for the oxidative absorption of hydrogen sulfide[J]. Industrial & Engineering Chemistry Research, 1998, 37(4): 1444-1453. |
18 | WUBS Harm J, BEENACKERS Antonie A C M. Kinetics of the oxidation of ferrous chelates of EDTA and HEDTA in aqueous solution[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2580-2594. |
19 | Simon PICHÉ, RIBEIRO Nicolas, BACAOUI Abdelaziz, et al. Assessment of a redox alkaline/iron-chelate absorption process for the removal of dilute hydrogen sulfide in air emissions[J]. Chemical Engineering Science, 2005, 60(22): 6452-6461. |
20 | GAMBARDELLA Francesca, GANZEVELD Ineke J, WINKELMAN Jos G M, et al. Kinetics of the reaction of FeⅡ(EDTA) with oxygen in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2005, 44(22): 8190-8198. |
21 | DESHMUKH Girish M, SHETE Aparna, PAWAR Deepali M. Oxidative absorption of hydrogen sulfide using an iron-chelate based process: Chelate degradation[J]. Journal of Chemical Technology & Biotechnology, 2013, 88(3): 432-436. |
22 | BEDELL Stephen A, WORLEY Clare M. Effect of dioxygen partial pressure on ligand degradation in chelated iron dehydrosulfurization processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(23): 10186-10189. |
23 | MIAO Xinmei, MA Yiwen, CHEN Zezhi, et al. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA[J]. Environmental Technology, 2018, 39(23): 3006-3012. |
24 | VECCHIO Carmelo LO, ARICÒ Antonino Salvatore, MONFORTE Giuseppe, et al. EDTA-derived Co N C and FeNC electro-catalysts for the oxygen reduction reaction in acid environment[J]. Renewable Energy, 2018, 120: 342-349. |
25 | MAIGUT Joachim, MEIER Roland, VAN ELDIK Rudi. Influence of fluoride on the reversible binding of NO by [Fe(Ⅱ)(EDTA)(H2O)]2-. Inhibition of autoxidation of [Fe(Ⅱ)(EDTA)(H2O)] 2- [J]. Inorganic Chemistry, 2008, 47(14): 6314-6321. |
26 | HUA Guoxiong, ZHANG Qingzhi, MCMANUS Derek, et al. Improvement of the Fe-NTA sulfur recovery system by the addition of a hydroxyl radical scavenger[J]. Phosphorus, Sulfur, and Silicon and the Related Elements, 2007, 182(1): 181-198. |
27 | 饶胡敏, 黄旺银. 影响水体中溶解氧含量因素的探讨[J]. 盐科学与化工, 2017, 46(3): 40-43. |
RAO Humin, HUANG Wangyin. Discussion on influencing factor of content of dissolved oxygen in water[J]. Journal of Salt Science and Chemical Industry, 2017, 46(3): 40-43. | |
28 | DEMMINK J F, BEENACKERS A A C M. Oxidation of ferrous nitrilotriacetic acid with oxygen: A model for oxygen mass transfer parallel to reaction kinetics[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 1989-2005. |
29 | ANSON Colin W, GHOSH Soumya, Sharon HAMMES-SCHIFFER, et al. Co(salophen)-catalyzed aerobic oxidation of p-hydroquinone: Mechanism and implications for aerobic oxidation catalysis[J]. Journal of the American Chemical Society, 2016, 138(12): 4186-4193. |
30 | LUC Wesley, JIANG Zhao, CHEN Jingguang G, et al. Role of surface oxophilicity in copper-catalyzed water dissociation[J]. ACS Catalysis, 2018, 8(10): 9327-9333. |
31 | CANTRELL Kirk J, YABUSAKI Steven B, ENGELHARD Mark H, et al. Oxidation of H2S by iron oxides in unsaturated conditions[J]. Environmental Science & Technology, 2003, 37(10): 2192-2199. |
32 | 罗莹, 朱振峰, 刘有智. 络合铁法脱H2S技术研究进展[J]. 天然气化工, 2014, 39(1): 88-94. |
LUO Ying, ZHU Zhenfeng, LIU Youzhi. Research progress in technologies for removal of H2S with iron chelate solutions[J]. Natural Gas Chemical Industry, 2014, 39(1): 88-94. | |
33 | KLEINJAN Wilfred E, DE KEIZER Arie, JANSSEN Albert J H. Kinetics of the reaction between dissolved sodium sulfide and biologically produced sulfur[J]. Industrial & Engineering Chemistry Research, 2005, 44(2): 309-317. |
34 | Simon PICHÉ, LARACHI Faïçal. Dynamics of pH on the oxidation of HS- with iron(Ⅲ) chelates in anoxic conditions[J]. Chemical Engineering Science, 2006, 61(23): 7673-7683. |
[1] | CHEN Kexin, LI Xi, CHANG Fucheng, WU Xiaoyi, LOU Jiacheng, LI Huixiong. Investigation on pressure drop and characteristics of flow-pattern transition of steam-water two-phase flows in helically coiled tubes [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 613-624. |
[2] | ZHANG Haibing, LIU Yun’e, HUANG Zhihao, SHEN Rong. Electrocatalytic reduction of NO3--N by the prepared Ti foam-Ni-Sn/Bi cathode [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1100-1109. |
[3] | LIU Fazhi, ZHANG Pengwei, LIU Tao, XIE Yuxian, HE Jianle, SU Sheng, XU Jun, XIANG Jun. Mechanism of anti-CO poisoning of Sb-modified vanadium-titanium SCR denitrification catalysts [J]. Chemical Industry and Engineering Progress, 2025, 44(2): 1129-1137. |
[4] | SU Xuanhe, MENG Shida, KE Jiekun, LU Wei. Analyses of performance and energy consumption for a multistage gas separation system based on molecular exchange flow [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 109-120. |
[5] | LIU Chuanlei, CHEN Yuxiang, GUO Guanchu, ZHAO Qiyue, JIANG Hao, SUN Hui, SHEN Benxian. Designing novel alkoxypropylamine solvents for removing mercaptans from high-acidity natural gas [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 184-191. |
[6] | NI Peng, WANG Xianhong, HUANG Yuhan, MA Xiaotong, MA Zizhen, TAN Yan, ZHANG Huawei, LIU Ting. Latest progress and comparison of the injection demercuration application of activated carbon and magnetic metals adsorbents [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 513-524. |
[7] | LI Hao, SUN Yunan, LI Jian, TAO Junyu, CHENG Zhanjun, YAN Beibei, CHEN Guanyi. Co-gasification characteristics of excavated waste and municipal solid waste blends [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 525-537. |
[8] | LIU Xinwei, GAO Shan, WANG Hongtao, WANG Jiancheng. Activation of gasification fine slag and aluminum ash and their adsorption properties [J]. Chemical Industry and Engineering Progress, 2025, 44(1): 558-571. |
[9] | ZHAO Qi, QIAN Xiaodong, XIAO Fangxiong, CHEN Li, XU Zhan. Construction and application analysis of a quantitative evaluation system for urban gas safety resilience [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 174-179. |
[10] | LI Lei, ZHAO Yanmin, TIAN Haiyang, LI Jiangwei, ZHOU Qiang, HE Jiani, WU Wanyue. Simulation and optimization of low energy consumption and high efficiency capture process for low concentration CO2 in flue gas [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 581-589. |
[11] | XU Qingqing, ZHANG Xuan, ZHAO Ruidong, XIONG Xin, JIANG Lumeng, YU Shengyang. Bayesian network risk assessment method for hydrogen blending natural gas pipeline leakage [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 61-70. |
[12] | TAO Yi, ZHANG Chen, HU Yijiong, QIU Tong. Molecular reconstruction model of vacuum gas oil based on molecular structural distribution [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 71-76. |
[13] | ZHAO Menglei, ZHAO Jun, LU Hongbin, TAO Shaohui, ZHAO Wenying, XIANG Shuguang. Development and application of coal gasification reactor model based on Gibbs free energy minimization method [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4793-4799. |
[14] | ZHANG Wei, SONG Quanbin, ZHOU Yunhe, DONG Mengyao, LI Jie, WU Qiao, FU Yehao, LIANG Yaocheng, YIN Yanshan, CHENG Shan, SONG Jian. Selectivity of ion conductive membranes in all-vanadium flow battery [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4859-4870. |
[15] | WANG Ning, DENG Shifeng, QU Teng, SHAO Huaishuang, ZHAO Qinxin. Simulation on combustion characteristics of fully premixed water-cooling gas boiler with compact slit structure [J]. Chemical Industry and Engineering Progress, 2024, 43(9): 4871-4881. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |