Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (12): 7004-7017.DOI: 10.16085/j.issn.1000-6613.2023-1973
• Resources and environmental engineering • Previous Articles
ZENG Xiangchu1,2,3(), MO Zhenrong1,2, YIN Xiuju1,2(
), WU Zhe1,2(
)
Received:
2023-11-13
Revised:
2024-02-20
Online:
2025-01-11
Published:
2024-12-15
Contact:
YIN Xiuju, WU Zhe
曾湘楚1,2,3(), 莫镇榕1,2, 银秀菊1,2(
), 武哲1,2(
)
通讯作者:
银秀菊,武哲
作者简介:
曾湘楚(1990—),男,博士,讲师,研究方向为环境功能材料。E-mail: xiangchuzeng@163.com。
基金资助:
CLC Number:
ZENG Xiangchu, MO Zhenrong, YIN Xiuju, WU Zhe. Synergistic adsorption mechanism of aqueous Cu(Ⅱ) and TC by N and S co-doped biochar[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 7004-7017.
曾湘楚, 莫镇榕, 银秀菊, 武哲. N、S共掺杂磁性生物炭对水体Cu(Ⅱ)和四环素的协同吸附机制[J]. 化工进展, 2024, 43(12): 7004-7017.
生物炭 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|
Fe-BC | 182.39 | 12.27 | 0.08 |
Fe/N-BC | 320.46 | 6.16 | 0.17 |
Fe/S-BC | 217.28 | 10.23 | 0.10 |
Fe/N/S-BC-600 | 269.58 | 10.09 | 0.15 |
Fe/N/S-BC-800 | 329.79 | 10.06 | 0.21 |
生物炭 | 比表面积/m2·g-1 | 孔径/nm | 孔容/cm3·g-1 |
---|---|---|---|
Fe-BC | 182.39 | 12.27 | 0.08 |
Fe/N-BC | 320.46 | 6.16 | 0.17 |
Fe/S-BC | 217.28 | 10.23 | 0.10 |
Fe/N/S-BC-600 | 269.58 | 10.09 | 0.15 |
Fe/N/S-BC-800 | 329.79 | 10.06 | 0.21 |
生物炭 | 污染物 | qe,exp/mg·g-1 | 拟一级模型 | 拟二级模型 | ||||
---|---|---|---|---|---|---|---|---|
qe,cal/mg·g-1 | k1 | R12 | qe,cal/mg·g-1 | k2 | R22 | |||
Fe-BC | Cu(Ⅱ) | 75.31 | 54.53 | 3.45×10-3 | 0.88 | 71.42 | 1.18×10-4 | 0.99 |
TC | 17.53 | 3.94 | 6.33×10-3 | 0.62 | 17.24 | 8.63×10-3 | 0.99 | |
Fe/N-BC | Cu(Ⅱ) | 120.35 | 74.66 | 3.43×10-3 | 0.88 | 118.70 | 1.04×10-4 | 0.99 |
TC | 23.87 | 2.85 | 6.24×10-3 | 0.28 | 23.81 | 1.10×10-2 | 0.99 | |
Fe/S-BC | Cu(Ⅱ) | 115.31 | 99.87 | 2.76×10-3 | 0.96 | 114.94 | 5.01×10-5 | 0.99 |
TC | 23.12 | 5.16 | 4.17×10-3 | 0.38 | 21.74 | 9.20×10-3 | 0.99 | |
Fe/N/S-BC | Cu(Ⅱ) | 186.52 | 130.12 | 4.14×10-3 | 0.86 | 185.19 | 6.94×10-5 | 0.99 |
TC | 24.97 | 1.06 | 8.54×10-3 | 0.24 | 25.00 | 1.78×10-2 | 0.99 |
生物炭 | 污染物 | qe,exp/mg·g-1 | 拟一级模型 | 拟二级模型 | ||||
---|---|---|---|---|---|---|---|---|
qe,cal/mg·g-1 | k1 | R12 | qe,cal/mg·g-1 | k2 | R22 | |||
Fe-BC | Cu(Ⅱ) | 75.31 | 54.53 | 3.45×10-3 | 0.88 | 71.42 | 1.18×10-4 | 0.99 |
TC | 17.53 | 3.94 | 6.33×10-3 | 0.62 | 17.24 | 8.63×10-3 | 0.99 | |
Fe/N-BC | Cu(Ⅱ) | 120.35 | 74.66 | 3.43×10-3 | 0.88 | 118.70 | 1.04×10-4 | 0.99 |
TC | 23.87 | 2.85 | 6.24×10-3 | 0.28 | 23.81 | 1.10×10-2 | 0.99 | |
Fe/S-BC | Cu(Ⅱ) | 115.31 | 99.87 | 2.76×10-3 | 0.96 | 114.94 | 5.01×10-5 | 0.99 |
TC | 23.12 | 5.16 | 4.17×10-3 | 0.38 | 21.74 | 9.20×10-3 | 0.99 | |
Fe/N/S-BC | Cu(Ⅱ) | 186.52 | 130.12 | 4.14×10-3 | 0.86 | 185.19 | 6.94×10-5 | 0.99 |
TC | 24.97 | 1.06 | 8.54×10-3 | 0.24 | 25.00 | 1.78×10-2 | 0.99 |
生物炭 | 污染物 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|---|
qm,cal/mg·g-1 | kL | RL2 | kF | n | RF2 | ||
Fe-BC | Cu(Ⅱ) | 174.47 | 0.03 | 0.98 | 28.75 | 3.24 | 0.93 |
TC | 88.21 | 0.12 | 0.99 | 13.18 | 1.89 | 0.95 | |
Fe/N-BC | Cu(Ⅱ) | 180.34 | 0.05 | 0.98 | 36.39 | 3.58 | 0.91 |
TC | 101.41 | 0.13 | 0.99 | 0.96 | 1.85 | 0.96 | |
Fe/S-BC | Cu(Ⅱ) | 180.01 | 0.04 | 0.98 | 31.76 | 3.36 | 0.91 |
TC | 95.24 | 0.13 | 0.99 | 15.37 | 1.90 | 0.96 | |
Fe/N/S-BC | Cu(Ⅱ) | 230.70 | 0.05 | 0.98 | 44.02 | 3.41 | 0.92 |
TC | 93.63 | 0.25 | 0.99 | 25.96 | 2.46 | 0.97 |
生物炭 | 污染物 | Langmuir模型 | Freundlich模型 | ||||
---|---|---|---|---|---|---|---|
qm,cal/mg·g-1 | kL | RL2 | kF | n | RF2 | ||
Fe-BC | Cu(Ⅱ) | 174.47 | 0.03 | 0.98 | 28.75 | 3.24 | 0.93 |
TC | 88.21 | 0.12 | 0.99 | 13.18 | 1.89 | 0.95 | |
Fe/N-BC | Cu(Ⅱ) | 180.34 | 0.05 | 0.98 | 36.39 | 3.58 | 0.91 |
TC | 101.41 | 0.13 | 0.99 | 0.96 | 1.85 | 0.96 | |
Fe/S-BC | Cu(Ⅱ) | 180.01 | 0.04 | 0.98 | 31.76 | 3.36 | 0.91 |
TC | 95.24 | 0.13 | 0.99 | 15.37 | 1.90 | 0.96 | |
Fe/N/S-BC | Cu(Ⅱ) | 230.70 | 0.05 | 0.98 | 44.02 | 3.41 | 0.92 |
TC | 93.63 | 0.25 | 0.99 | 25.96 | 2.46 | 0.97 |
生物炭 | 污染物 | T/K | ΔG/kJ·mol-1 | ΔH/kJ·mol-1 | ΔS/kJ·mol-1·K-1 |
---|---|---|---|---|---|
Fe/N/S-BC | Cu(Ⅱ) | 293 | -2.31 | 21.53 | 80.98 |
303 | -2.80 | ||||
313 | -3.96 | ||||
TC | 293 | -3.51 | 6.82 | 35.09 | |
303 | -3.80 | ||||
313 | -4.22 |
生物炭 | 污染物 | T/K | ΔG/kJ·mol-1 | ΔH/kJ·mol-1 | ΔS/kJ·mol-1·K-1 |
---|---|---|---|---|---|
Fe/N/S-BC | Cu(Ⅱ) | 293 | -2.31 | 21.53 | 80.98 |
303 | -2.80 | ||||
313 | -3.96 | ||||
TC | 293 | -3.51 | 6.82 | 35.09 | |
303 | -3.80 | ||||
313 | -4.22 |
1 | ZENG Xiangchu, ZHANG Guanghua, ZHU Junfeng, et al. Adsorption of heavy metal ions in water by surface functionalized magnetic composites: A review[J]. Environmental Science: Water Research & Technology, 2022, 8(5): 907-925. |
2 | 曾湘楚, 张光华, 张万斌, 等. 希夫碱改性Fe3O4杂化材料的制备与表征[J]. 精细化工, 2021, 38(9): 1791-1797, 1807. |
ZENG Xiangchu, ZHANG Guanghua, ZHANG Wanbin, et al. Preparation and characterization of Schiff base modified Fe3O4 hybrid material[J]. Fine Chemicals, 2021, 38(9): 1791-1797, 1807. | |
3 | YANG Yuxiao, ZHU Junfeng, ZENG Qingzhu, et al. Activation of persulfate by iron-loaded soybean straw biochar for efficient degradation of dye contaminants: Synthesis, performance, and mechanism[J]. Environmental Progress & Sustainable Energy, 2023, 42(5): e14190. |
4 | ZENG Xiangchu, ZHANG Guanghua, WEN Jia, et al. Simultaneous removal of aqueous same ionic type heavy metals and dyes by a magnetic chitosan/polyethyleneimine embedded hydrophobic sodium alginate composite: Performance, interaction and mechanism[J]. Chemosphere, 2023, 318: 137869. |
5 | YANG Yuxiao, ZHU Junfeng, ZENG Qingzhu, et al. Enhanced activation of peroxydisulfate by regulating pyrolysis temperature of biochar supported nZVI for the degradation of oxytetracycline[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 145: 104775. |
6 | 彭程, 徐漪琳, 石钰婧, 等. 生物炭改性及其对除草剂污染水体和土壤修复的研究进展[J]. 化工进展, 2024, 43(2): 1069-1081. |
PENG Cheng, XU Yilin, SHI Yujing, et al. Research progress on the biochar modification and its remediation of herbicide-contaminated water and soil[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1069-1081. | |
7 | FENG Zhuqing, YUAN Rongfang, WANG Fei, et al. Preparation of magnetic biochar and its application in catalytic degradation of organic pollutants: A review[J]. The Science of the Total Environment, 2021, 765: 142673. |
8 | ZENG Xiangchu, ZHU Junfeng, ZHANG Guanghua, et al. Molecular-level understanding on complexation-adsorption-degradation during the simultaneous removal of aqueous binary pollutants by magnetic composite aerogels[J]. Chemical Engineering Journal, 2023, 468: 143536. |
9 | 周春地, 阳婷, 闵熙泽, 等. 零价铁、铜改性生物炭及其对Cr(Ⅵ)吸附性能的影响[J]. 化工进展, 2020, 39(10): 4275-4282. |
ZHOU Chundi, YANG Ting, MIN Xize, et al. Influence of zero valent iron and copper modified biochar on Cr(Ⅵ) adsorption[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4275-4282. | |
10 | HUANG Kuncheng, YANG Shuquan, LIU Xiaohao, et al. Adsorption of antibiotics from wastewater by cabbage-based N, P co-doped mesoporous carbon materials[J]. Journal of Cleaner Production, 2023, 391: 136174. |
11 | ZENG Xiangchu, ZHANG Guanghua, WU Zhe. Preparation and characterization of Schiff-base modified Fe3O4 hybrid material and its selective adsorption for aqueous Hg2+ [J]. Environmental Science and Pollution Research International, 2022, 29(20): 30324-30336. |
12 | REN Zhijun, WANG Zhanxin, Longyi LYU, et al. Fe-N complex biochar as a superior partner of sodium sulfide for methyl orange decolorization by combination of adsorption and reduction[J]. Journal of Environmental Management, 2022, 316: 115213. |
13 | CHOONG Zheng Yi, GASIM Mohamed Faisal, LIN Kun- Yi Andrew, et al. Unravelling the formation mechanism and performance of nitrogen, sulfur codoped biochar as peroxymonosulfate activator for gatifloxacin removal[J]. Chemical Engineering Journal, 2023, 451: 138958. |
14 | PANG Kangfeng, SUN Wei, YE Feng, et al. Sulfur-modified chitosan derived N, S-co-doped carbon as a bifunctional material for adsorption and catalytic degradation sulfamethoxazole by persulfate[J]. Journal of Hazardous Materials, 2022, 424: 127270. |
15 | LIU Yuyan, SOHI Saran P, LIU Siyuan, et al. Adsorption and reductive degradation of Cr(Ⅵ) and TCE by a simply synthesized zero valent iron magnetic biochar[J]. Journal of Environmental Management, 2019, 235: 276-281. |
16 | DUAN Xiaoguang, Kane O’DONNELL, SUN Hongqi, et al. Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions[J]. Small, 2015, 11(25): 3036-3044. |
17 | GUO Yong, YAN Congcong, WANG Peifang, et al. Doping of carbon into boron nitride to get the increased adsorption ability for tetracycline from water by changing the pH of solution[J]. Chemical Engineering Journal, 2020, 387: 124136. |
18 | ZENG Xiangchu, ZHANG Guanghua, LI Xiuling, et al. Selective removal of aqueous Hg2+ by magnetic composites sulfur-containing on the hyper-branched surface: Characterization, performance and mechanism[J]. Journal of Environmental Management, 2023, 325: 116621. |
19 | MA Yongfei, LI Ming, LI Ping, et al. Hydrothermal synthesis of magnetic sludge biochar for tetracycline and ciprofloxacin adsorptive removal[J]. Bioresource Technology, 2021, 319: 124199. |
20 | DUAN Ran, MA Shuanglong, XU Shengjun, et al. Soybean straw biochar activating peroxydisulfate to simultaneously eliminate tetracycline and tetracycline resistance bacteria: Insights on the mechanism[J]. Water Research, 2022, 218: 118489. |
21 | ZHANG Ting, WU Shuang, LI Ning, et al. Applications of vacancy defect engineering in persulfate activation: Performance and internal mechanism[J]. Journal of Hazardous Materials, 2023, 449: 130971. |
22 | ZENG Xiangchu, ZHANG Guanghua, ZHU Junfeng. Selective adsorption of heavy metals from water by a hyper-branched magnetic composite material: Characterization, performance, and mechanism[J]. Journal of Environmental Management, 2022, 314: 114979. |
23 | CHEN Cheng, MA Tengfei, SHANG Yanan, et al. In-situ pyrolysis of Enteromorpha as carbocatalyst for catalytic removal of organic contaminants: Considering the intrinsic N/Fe in Enteromorpha and non-radical reaction[J]. Applied Catalysis B: Environmental, 2019, 250: 382-395. |
24 | LU Wenhui, LI Jinhua, SHENG Yanqing, et al. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(Ⅵ) from aqueous solution[J]. Journal of Colloid and Interface Science, 2017, 505: 1134-1146. |
25 | GUO Furong, WANG Kangjie, LU Jiahua, et al. Activation of peroxymonosulfate by magnetic carbon supported Prussian blue nanocomposite for the degradation of organic contaminants with singlet oxygen and superoxide radicals[J]. Chemosphere, 2019, 218: 1071-1081. |
26 | LUO Yidan, WANG Yonghu, ZHU Yaowei, et al. Ball-milled bismuth oxychloride/biochar nanocomposites with rich oxygen vacancies for reactive red-120 adsorption in aqueous solution[J]. Biochar, 2022, 4(1): 21. |
27 | HAO Yongyong, MA Hongrui, WANG Qing, et al. Complexation behaviour and removal of organic-Cr(Ⅲ) complexes from the environment: A review[J]. Ecotoxicology and Environmental Safety, 2022, 240: 113676. |
28 | GUO Yaoping, ZENG Zequan, ZHU Youcai, et al. Catalytic oxidation of aqueous organic contaminants by persulfate activated with sulfur-doped hierarchically porous carbon derived from thiophene[J]. Applied Catalysis B: Environmental, 2018, 220: 635-644. |
29 | YAO Yunjin, LIAN Chao, WU Guodong, et al. Synthesis of “sea urchin” -like carbon nanotubes/porous carbon superstructures derived from waste biomass for treatment of various contaminants[J]. Applied Catalysis B: Environmental, 2017, 219: 563-571. |
30 | WEI Yan, MIAO Jie, GE Jianxin, et al. Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu(Ⅲ) formation and preferential electron transfer during degradation of phenols[J]. Environmental Science & Technology, 2022, 56(12): 8984-8992. |
31 | YANG Xiaobing, ZENG Xiangchu, CHEN Hanchun, et al. Coupled homogeneous/heterogeneous Fenton-like system to enhance the synchronized decontamination of aqueous tetracycline and Salmonella typhi[J]. Chemical Engineering Journal, 2024, 483: 148697. |
32 | 曾湘楚, 黄红诚, 宋华, 等. 聚乙烯亚胺改性壳聚糖气凝胶对Cr(Ⅵ)和Cu(Ⅱ)的吸附及机理[J]. 华南师范大学学报(自然科学版), 2023, 55(5): 47-58. |
ZENG Xiangchu, HUANG Hongcheng, SONG Hua, et al. Adsorption and mechanism of Cr(Ⅵ) and Cu(Ⅱ) by polyethyleneimine modified chitosan aerogel[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(5): 47-58. |
[1] | HUANG Jun, ZHANG Yingjuan, LIN Yintong, WEI Xuechun, WU Yutong, WU Gaobo, MO Junlin, ZHAO Zhenxia, ZHAO Zhongxing. Preparation of silkworm excrement-based porous biocarbon and synergistic adsorption and slow-release performance for monosultap and dinotefuran [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3964-3971. |
[2] | LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502. |
[3] | XU Shiqi, ZHU Ying, CHEN Ninghua, LU Caimei, JIANG Luying, WANG Junhui, QIN Yuelong, ZHANG Hanbing. Effect of environmental factors on the photocatalytic degradation behavior of tetracycline in water [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 551-559. |
[4] | KE Yuxin, ZHU Xiaoli, SI Shaocheng, ZHANG Ting, WANG Junqiang, ZHANG Ziye. Adsorbent derived from spent bleaching earth for the synergistic removal of tetracycline and copper in wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5981-5992. |
[5] | HUANG Jiaqi, GE Yuanyuan, LI Zhili, WANG Yipin, CUI Xuemin. Preparation of biochar/geopolymer composite film and its removal of tetracycline [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 427-434. |
[6] | TANG Rui, ZHANG Hanbing, LU Caimei, LIU Kun, WANG Zhongkai, YU Sishan, TONG Zhangfa, JI Junrong. Adsorption of ciprofloxacin and tetracycline by organically modified magnetic bentonite [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6235-6245. |
[7] | CAO Lili, JIANG Shanqing, LING Zeyu, WANG Chuqiao, XU Xia, WANG Liping. Properties and mechanisms of tetracycline photocatalytic degradation by hydrothermal synthesis Ag-SrTiO3 in visible-light [J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4500-4508. |
[8] | YE Linjing, AN Xiaoying, JIANG Yunjie, YAN Chao, GUAN Weisheng. Preparation of ZnO/CdS composite photocatalyst and its degradability on tetracycline antibiotic [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 3944-3950. |
[9] | HUANG Shenglin, HE Shi, WEI Xin, XUE Gang, GAO Pin. Pollution characteristics of tetracycline residues and tetracycline resistance genes in sewage treatment plants:A review [J]. Chemical Industry and Engineering Progree, 2015, 34(06): 1779-1785. |
[10] | CHENG Chen, YAN Zheng. Degradation of oxytetracycline in wastewater by multi-frequency ultrasonic [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 1143-1146,1164. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 42
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |