1 |
NGHIEM Nhuan, KLEFF Susanne, SCHWEGMANN Stefan. Succinic acid: Technology development and commercialization[J]. Fermentation, 2017, 3(2): 26.
|
2 |
BEAUPREZ Joeri J, DE MEY Marjan, SOETAERT Wim K. Microbial succinic acid production: Natural versus metabolic engineered producers[J]. Process Biochemistry, 2010, 45(7): 1103-1114.
|
3 |
Benjamin COK, TSIROPOULOS Ioannis, ROES Alexander L, et al. Succinic acid production derived from carbohydrates: An energy and greenhouse gas assessment of a platform chemical toward a bio-based economy[J]. Biofuels, Bioproducts and Biorefining, 2014, 8(1): 16-29.
|
4 |
LU Jiasheng, LI Jiawen, GAO Hao, et al. Recent progress on bio-succinic acid production from lignocellulosic biomass[J]. World Journal of Microbiology and Biotechnology, 2021, 37(1): 16.
|
5 |
LU Jiasheng, Yang LYU, JIANG Yujia, et al. Consolidated bioprocessing of hemicellulose-enriched lignocellulose to succinic acid through a microbial cocultivation system[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9035-9045.
|
6 |
VERMA Minal, MANDYAL Parteek, SINGH Dilbag, et al. Recent developments in heterogeneous catalytic routes for the sustainable production of succinic acid from biomass resources[J]. ChemSusChem, 2020, 13(16): 4026-4034.
|
7 |
Enlin LO, Luiza BRABO-CATALA, DOGARIS Ioannis, et al. Biochemical conversion of sweet sorghum bagasse to succinic acid[J]. Journal of Bioscience and Bioengineering, 2020, 129(1): 104-109.
|
8 |
SU Hsiang-Yen, LI Huaying, XIE Caiyun, et al. Co-production of acetoin and succinic acid by metabolically engineered Enterobacter cloacae[J]. Biotechnology for Biofuels, 2021, 14(1): 26.
|
9 |
SHEN Naikun, ZHANG Hongyan, QIN Yan, et al. Efficient production of succinic acid from duckweed (Landoltia punctata) hydrolysate by Actinobacillus succinogenes GXAS137[J]. Bioresource Technology, 2018, 250: 35-42.
|
10 |
CHOI Sol, SONG Hyohak, Sung Won LIM, et al. Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification[J]. Biotechnology and Bioengineering, 2016, 113(10): 2168-2177.
|
11 |
YU Yong, ZHU Xinna, XU Hongtao, et al. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli [J]. Metabolic Engineering, 2019, 56: 181-189.
|
12 |
ZHU Liwen, TANG Yajie. Current advances of succinate biosynthesis in metabolically engineered Escherichia coli [J]. Biotechnology Advances, 2017, 35(8): 1040-1048.
|
13 |
FERONE Mariateresa, RAGANATI Francesca, OLIVIERI Giuseppe, et al. Bioreactors for succinic acid production processes[J]. Critical Reviews in Biotechnology, 2019, 39(4): 571-586.
|
14 |
JANTAMA Kaemwich, HAUPT M J, SVORONOS Spyros A, et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate[J]. Biotechnology and Bioengineering, 2008, 99(5): 1140-1153.
|
15 |
CHEN Xiaoju, ZHOU Yaojie, ZHANG Di. Engineering Corynebacterium crenatum for enhancing succinic acid production[J]. Journal of Food Biochemistry, 2018, 42(6): e12645.
|
16 |
Jung Ho AHN, SEO Hogyun, PARK Woojin, et al. Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase[J]. Nature Communications, 2020, 11(1): 1970.
|
17 |
DATSENKO K A, WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645.
|
18 |
ZHAO Busi, SUN Liankun, JIANG Xianrui, et al. Genipin protects against cerebral ischemia-reperfusion injury by regulating the UCP2-SIRT3 signaling pathway[J]. European Journal of Pharmacology, 2019, 845: 56-64.
|
19 |
JIANG Yongshun, CAO Sai, ZHOU Bin, et al. Hemocytes in blue mussel Mytilus edulis adopt different energy supply modes to cope with different BDE-47 exposures[J]. Science of the Total Environment, 2023, 885: 163766.
|
20 |
ROUCOURT Bart, MINNEBO Nikki, AUGUSTIJNS Patrick, et al. Biochemical characterization of malate synthase G of P. aeruginosa [J]. BMC Biochemistry, 2009, 10: 20.
|
21 |
SUN Jikang, JIA Hao, WANG Ping, et al. Exogenous gibberellin weakens lipid breakdown by increasing soluble sugars levels in early germination of zanthoxylum seeds[J]. Plant Science, 2019, 280: 155-163.
|
22 |
YANG Kui, YIN Qin, MAO Qingcheng, et al. Metabolomics analysis reveals therapeutic effects of α-mangostin on collagen-induced arthritis in rats by down-regulating nicotinamide phosphoribosyltransferase[J]. Inflammation, 2019, 42(2): 741-753.
|
23 |
YAO Yuxin, LI Ming, ZHAI Heng, et al. Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis[J]. Journal of Plant Physiology, 2011, 168(5): 474-480.
|
24 |
SUN Wenhui, JIANG Bo, ZHANG Yue, et al. Enabling the biosynthesis of malic acid in Lactococcus lactis by establishing the reductive TCA pathway and promoter engineering[J]. Biochemical Engineering Journal, 2020, 161: 107645.
|
25 |
LU Ping, GAO Ting, BAI Ruoxuan, et al. Regulation of carbon flux and NADH/NAD+ supply to enhance 2,3-butanediol production in Enterobacter aerogenes [J]. Journal of Biotechnology, 2022, 358: 67-75.
|
26 |
KUIT Wouter, MINTON Nigel P, LÓPEZ-CONTRERAS Ana M, et al. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production[J]. Applied Microbiology and Biotechnology, 2012, 94(3): 729-741.
|
27 |
GE Jingping, WANG Jiawang, YE Guangbin, et al. Disruption of the lactate dehydrogenase and acetate kinase genes in Klebsiella pneumoniae HD79 to enhance 2, 3-butanediol production, and related transcriptomics analysis[J]. Biotechnology Letters, 2020, 42(4): 537-549.
|
28 |
KYNSHI Balakyntiewshisha Lyngdoh, SACHU Meguovilie, SYIEM Mayashree B. Modulation in isocitrate dehydrogenase activity under citrate enrichment affects carbon and nitrogen fixations in the cyanobacterium Nostoc muscorum Meg 1[J]. Biochimie, 2021, 186: 94-104.
|
29 |
AFZAL Aqeel Rana, JEON Jinyoung, JUNG Che-Hun. Fumarase activity in NAD-dependent malic enzyme, MaeA, from Escherichia coli [J]. Biochemical and Biophysical Research Communications, 2023, 678: 144-147.
|
30 |
Céline BROCHIER-ARMANET, MADERN Dominique. Phylogenetics and biochemistry elucidate the evolutionary link between l-malate and l-lactate dehydrogenases and disclose an intermediate group of sequences with mix functional properties[J]. Biochimie, 2021, 191: 140-153.
|
31 |
ZHOU Shenghu, DING Nana, HAN Runhua, et al. Metabolic engineering and fermentation optimization strategies for producing organic acids of the tricarboxylic acid cycle by microbial cell factories[J]. Bioresource Technology, 2023, 379: 128986.
|
32 |
NGUYEN Diep Thi Ngoc, LEE Ok Kyung, HADIYATI Susila, et al. Metabolic engineering of the type Ⅰ methanotroph Methylomonas sp. DH-1 for production of succinate from methane[J]. Metabolic Engineering, 2019, 54: 170-179.
|
33 |
DENG Yu, MA Ning, ZHU Kangjia, et al. Balancing the carbon flux distributions between the TCA cycle and glyoxylate shunt to produce glycolate at high yield and titer in Escherichia coli [J]. Metabolic Engineering, 2018, 46: 28-34.
|
34 |
ZHU Fayin, WANG Chengqiang, Ka-Yiu SAN, et al. Metabolic engineering of Escherichia coli to produce succinate from woody hydrolysate under anaerobic conditions[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(2): 223-232.
|
35 |
SHEN Naikun, LIAO Siming, WANG Qingyan, et al. Economical succinic acid production from sugarcane juice by Actinobacillus succinogenes supplemented with corn steep liquor and peanut meal as nitrogen sources[J]. Sugar Tech, 2016, 18(3): 292-298.
|
36 |
Lisbeth VALLECILLA-YEPEZ, RAMCHANDRAN Divya, LONG Dianna, et al. Corn fiber as a biomass feedstock for production of succinic acid[J]. Bioresource Technology Reports, 2021, 16: 100868.
|
37 |
XI Yonglan, CHEN Kequan, DAI Wenyu, et al. Succinic acid production by Actinobacillus succinogenes NJ113 using corn steep liquor powder as nitrogen source[J]. Bioresource Technology, 2013, 136: 775-779.
|
38 |
XI Yonglan, DAI Wenyu, XU Rong, et al. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes [J]. Bioprocess and Biosystems Engineering, 2013, 36(11): 1779-1785.
|
39 |
CARVALHO Margarida, MATOS Mariana, ROCA Christophe, et al. Succinic acid production from glycerol by Actinobacillus succinogenes using dimethylsulfoxide as electron acceptor[J]. New Biotechnology, 2014, 31(1): 133-139.
|
40 |
NARISETTY Vivek, OKIBE Maureen Chiebonam, AMULYA K, et al. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production[J]. Bioresource Technology, 2022, 360: 127513.
|
41 |
JIANG Min, CHEN Kequan, LIU Zhongmin, et al. Succinic acid production by Actinobacillus succinogenes using spent brewer’s yeast hydrolysate as a nitrogen source[J]. Applied Biochemistry and Biotechnology, 2010, 160(1): 244-254.
|
42 |
NGHIEM Nhuan P, DAVISON Brian H, THOMPSON James E, et al. The effect of biotin on the production of succinic acid by Anaerobiospirillum succiniciproducens [J]. Applied Biochemistry and Biotechnology, 1996, 57(1): 633-638.
|
43 |
CHENG Keke, ZHAO Xuebing, ZENG Jing, et al. Biotechnological production of succinic acid: Current state and perspectives[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(3): 302-318.
|
44 |
LIU Rongming, LIANG Liya, WU Mingke, et al. CO2 fixation for succinic acid production by engineered Escherichia coli co-expressing pyruvate carboxylase and nicotinic acid phosphoribosyltransferase[J]. Biochemical Engineering Journal, 2013, 79: 77-83.
|
45 |
SONG Hyohak, LEE Jeong Wook, CHOI Sol, et al. Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production[J]. Biotechnology and Bioengineering, 2007, 98(6): 1296-1304.
|
46 |
PIWOWAREK Kamil, Edyta LIPIŃSKA, Elżbieta HAĆ-SZYMAŃCZUK, et al. Propionibacterium spp.—Source of propionic acid, vitamin B12, and other metabolites important for the industry[J]. Applied Microbiology and Biotechnology, 2018, 102(2): 515-538.
|
47 |
MELLEFONT L A, MCMEEKIN T A, ROSS T. Effect of relative inoculum concentration on Listeria monocytogenes growth in co-culture[J]. International Journal of Food Microbiology, 2008, 121(2): 157-168.
|