Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (11): 6119-6128.DOI: 10.16085/j.issn.1000-6613.2023-1859
• Energy processes and technology • Previous Articles
ZHANG Wentao1(), ZHOU Jiahui1, ZHANG Runzhi1, WANG Luojia2, XU Gang1()
Received:
2023-10-20
Revised:
2024-01-12
Online:
2024-12-07
Published:
2024-11-15
Contact:
XU Gang
张文韬1(), 周家辉1, 张润之1, 王珞珈2, 徐钢1()
通讯作者:
徐钢
作者简介:
张文韬(2000—),男,硕士研究生,研究方向为氢集成优化设计。E-mail:zhangwt_ncepu@163.com。
基金资助:
CLC Number:
ZHANG Wentao, ZHOU Jiahui, ZHANG Runzhi, WANG Luojia, XU Gang. Optimization strategy of wind and solar hydrogen production alkaline electrolyzer cluster considering energy consumption characteristics[J]. Chemical Industry and Engineering Progress, 2024, 43(11): 6119-6128.
张文韬, 周家辉, 张润之, 王珞珈, 徐钢. 计及能耗特性的风光制氢碱性电解槽集群优化策略[J]. 化工进展, 2024, 43(11): 6119-6128.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1859
参数 | 数值 |
---|---|
Tstack/℃ | 85 |
P/bar | 16 |
r1/Ω·m² | 4.45153×10-5 |
r2/Ω·m²·℃-1 | 6.88874×10-9 |
d1/Ω·m² | -3.12996×10-6 |
d2/Ω·m²·bar-1 | 4.47137×10-7 |
s/V | 0.33824 |
t1/m²·A-1 | -0.01539 |
t2/m²·℃·A-1 | 2.00181 |
t3/m²·℃2·A-1 | 15.24178 |
f11/A2·m-4 | 478645.74 |
f12/A2·m-4·℃-1 | -2953.15 |
f21 | 1.0396 |
f22/℃-1 | -0.00104 |
i/A·m-² | 2600 |
Acell/m2 | 0.1 |
参数 | 数值 |
---|---|
Tstack/℃ | 85 |
P/bar | 16 |
r1/Ω·m² | 4.45153×10-5 |
r2/Ω·m²·℃-1 | 6.88874×10-9 |
d1/Ω·m² | -3.12996×10-6 |
d2/Ω·m²·bar-1 | 4.47137×10-7 |
s/V | 0.33824 |
t1/m²·A-1 | -0.01539 |
t2/m²·℃·A-1 | 2.00181 |
t3/m²·℃2·A-1 | 15.24178 |
f11/A2·m-4 | 478645.74 |
f12/A2·m-4·℃-1 | -2953.15 |
f21 | 1.0396 |
f22/℃-1 | -0.00104 |
i/A·m-² | 2600 |
Acell/m2 | 0.1 |
设备 | 投资成本 | 运维成本/投资成本 |
---|---|---|
光伏发电机组 | 3800CNY/kW | 1% |
风力发电机组 | 4800CNY/kW | 2% |
电解槽 | 3000CNY/kW | 2% |
蓄电池 | 2000CNY/(kW·h) | 4% |
设备 | 投资成本 | 运维成本/投资成本 |
---|---|---|
光伏发电机组 | 3800CNY/kW | 1% |
风力发电机组 | 4800CNY/kW | 2% |
电解槽 | 3000CNY/kW | 2% |
蓄电池 | 2000CNY/(kW·h) | 4% |
设备 | 项目 | 数值 |
---|---|---|
电解槽 | 运行负荷范围/% | 25~100 |
启动耗时/min | 60 | |
启动电能损失系数/% | 12 | |
蓄电池 | 自损率/% | 0.1 |
充放电效率/% | 95 |
设备 | 项目 | 数值 |
---|---|---|
电解槽 | 运行负荷范围/% | 25~100 |
启动耗时/min | 60 | |
启动电能损失系数/% | 12 | |
蓄电池 | 自损率/% | 0.1 |
充放电效率/% | 95 |
优化结果 | 参比方案 | 优化方案 | 差值 |
---|---|---|---|
弃电率/% | 1.16 | 0.03 | -1.13 |
电解槽启停次数/次 | 261 | 178 | -83 |
电解槽利用小时数/h | 3957 | 4012 | +45 |
氢气年产量/t | 6969.64 | 7106.72 | +137.08 |
年收益/×104 CNY | 9717.36 | 10197.16 | +479.8 |
优化结果 | 参比方案 | 优化方案 | 差值 |
---|---|---|---|
弃电率/% | 1.16 | 0.03 | -1.13 |
电解槽启停次数/次 | 261 | 178 | -83 |
电解槽利用小时数/h | 3957 | 4012 | +45 |
氢气年产量/t | 6969.64 | 7106.72 | +137.08 |
年收益/×104 CNY | 9717.36 | 10197.16 | +479.8 |
1 | 胡兵, 徐立军, 何山, 等. 碳达峰与碳中和目标下PEM电解水制氢研究进展[J]. 化工进展, 2022, 41(9): 4595-4604. |
HU Bing, XU Lijun, HE Shan, et al. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. | |
2 | 王培灿, 雷青, 刘帅, 等. 电解水制氢MoS2催化剂研究与氢能技术展望[J]. 化工进展, 2019, 38(1): 278-290. |
WANG Peican, LEI Qing, LIU Shuai, et al. MoS2-based electrocatalysts for hydrogen evolution and the prospect of hydrogen energy technology[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 278-290. | |
3 | ZENG Kai, ZHANG Dongke. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326. |
4 | 郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. |
GUO Bowen, LUO Dan, ZHOU Hongjun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. | |
5 | 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20. |
ZOU Caineng, LI Jianming, ZHANG Xi, et al. Industrial status, technological progress, challenges and prospects of hydrogen energy[J]. Natural Gas Industry, 2022, 42(4): 1-20. | |
6 | SANTOS Ana L, CEBOLA Maria-João, SANTOS Diogo M F. Towards the hydrogen economy—A review of the parameters that influence the efficiency of alkaline water electrolyzers[J]. Energies, 2021, 14(11): 3193. |
7 | 袁铁江, 万志, 王进君, 等. 考虑电解槽启停特性的制氢系统日前出力计划[J]. 中国电力, 2022, 55(1): 101-109. |
YUAN Tiejiang, WAN Zhi, WANG Jinjun, et al. The day-ahead output plan of hydrogen production system considering the start-stop characteristics of electrolytic cell[J]. Electric Power, 2022, 55(1): 101-109. | |
8 | 年珩, 陈磊磊, 赵建勇, 等. 基于电解槽状态识别的风光制氢系统能量管理优化[J]. 电测与仪表, 2023, 60(10): 10-16. |
NIAN Heng, CHEN Leilei, ZHAO Jianyong, et al. Energy management optimization of wind-solar hydrogen production system based on electrolytic cell state recognition[J]. Electrical Measurement & Instrumentation, 2023, 60(10): 10-16. | |
9 | 李军舟, 赵晋斌, 陈逸文, 等. 考虑动态功率区间和制氢效率的电转氢(P2H)设备容量配置优化[J]. 电工技术学报, 2023, 38(18): 4864-4874, 4920. |
LI Junzhou, ZHAO Jinbin, CHEN Yiwen, et al. Optimal capacity configuration of P2H equipment considering dynamic power range and hydrogen production efficiency[J]. Transactions of China Electrotechnical Society, 2023, 38(18): 4864-4874, 4920. | |
10 | 江岳文, 杨国铭, 陈宇辛, 等. 考虑电解槽动态制氢效率的氢网运行优化[J]. 中国电机工程学报, 2023, 43(8): 3014-3027. |
JIANG Yuewen, YANG Guoming, CHEN Yuxin, et al. Optimal operation for the hydrogen network under consideration of the dynamic hydrogen production efficiency of electrolyzers[J]. Proceedings of the CSEE, 2023, 43(8): 3014-3027. | |
11 | 沈小军, 聂聪颖, 吕洪. 计及电热特性的离网型风电制氢碱性电解槽阵列优化控制策略[J]. 电工技术学报, 2021, 36(3): 463-472. |
SHEN Xiaojun, NIE Congying, Hong LÜ. Coordination control strategy of wind power-hydrogen alkaline electrolyzer bank considering electrothermal characteristics[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 463-472. | |
12 | URSUA Alfredo, GANDIA Luis M, SANCHIS Pablo. Hydrogen production from water electrolysis: Current status and future trends[J]. Proceedings of the IEEE, 2012, 100(2): 410-426. |
13 | SHARGH S, KHORSHID GHAZANI B, MOHAMMADI-IVATLOO B, et al. Probabilistic multi-objective optimal power flow considering correlated wind power and load uncertainties[J]. Renewable Energy, 2016, 94: 10-21. |
14 | LU Zhenjun, ZHU Qing, ZHANG Weiguo, et al. Economic operation strategy of integrated hydrogen energy system considering the uncertainty of PV power output[J]. Energy Reports, 2023, 9: 463-471. |
15 | Øystein ULLEBERG. Modeling of advanced alkaline electrolyzers: A system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1): 21-33. |
16 | Mónica SÁNCHEZ, AMORES Ernesto, Lourdes RODRÍGUEZ, et al. Semi-empirical model and experimental validation for the performance evaluation of a 15kW alkaline water electrolyzer[J]. International Journal of Hydrogen Energy, 2018, 43(45): 20332-20345. |
17 | 林涛, 赵丹阳, 严寒. 风电消纳下多型号制氢机组阵列优化调度研究[J]. 太阳能学报, 2022, 43(11): 466-473. |
LIN Tao, ZHAO Danyang, YAN Han. Research on optimal scheduling of multi-model hydrogen generator array under wind power consumption[J]. Acta Energiae Solaris Sinica, 2022, 43(11): 466-473. | |
18 | 孙惠娟, 阙炜新, 彭春华. 考虑电氢耦合和碳交易的电氢能源系统置信间隙鲁棒规划[J]. 电网技术, 2023, 47(11): 4477-4490. |
SUN Huijuan, QUE Weixin, PENG Chunhua. Confidence gap robust planning of electricity and hydrogen energy system considering electricity-hydrogen coupling and carbon trading[J]. Power System Technology, 2023, 47(11): 4477-4490. | |
19 | 李奇, 赵淑丹, 蒲雨辰, 等. 考虑电氢耦合的混合储能微电网容量配置优化[J]. 电工技术学报, 2021, 36(3): 486-495. |
LI Qi, ZHAO Shudan, PU Yuchen, et al. Capacity optimization of hybrid energy storage microgrid considering electricity-hydrogen coupling[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 486-495. | |
20 | 左逢源, 张玉琼, 赵强, 等. 计及源荷不确定性的综合能源生产单元运行调度与容量配置两阶段随机优化[J]. 中国电机工程学报, 2022, 42(22): 8205-8215. |
ZUO Fengyuan, ZHANG Yuqiong, ZHAO Qiang, et al. Two-stage stochastic optimization for operation scheduling and capacity allocation of integrated energy production unit considering supply and demand uncertainty[J]. Proceedings of the CSEE, 2022, 42(22): 8205-8215. | |
21 | 国家能源局. 关于开展燃料电池汽车示范应用的通知[EB/OL]. [2020-09-21]. . |
National Energy Administration. Notice on launching fuel cell vehicle demonstration projects[EB/OL]. [2020-09-21]. . | |
22 | FAN Jingli, YU Pengwei, LI Kai, et al. A levelized cost of hydrogen (LCOH) comparison of coal-to-hydrogen with CCS and water electrolysis powered by renewable energy in China[J]. Energy, 2022, 242: 123003. |
23 | 张轩, 王凯, 樊昕晔, 等. 电解水制氢成本分析[J]. 现代化工, 2021, 41(12): 7-11. |
ZHANG Xuan, WANG Kai, FAN Xinye, et al. Cost analysis on hydrogen production via water electrolysis[J]. Modern Chemical Industry, 2021, 41(12): 7-11. | |
24 | 陈晨, 李端超, 王海伟, 等. 考虑不确定性的综合能源系统日前经济调度[J]. 电力科学与技术学报, 2021, 36(2): 24-30. |
CHEN Chen, LI Duanchao, WANG Haiwei, et al. Study on day-ahead economic dispatch of integrated energy system considering uncertainty[J]. Journal of Electric Power Science and Technology, 2021, 36(2): 24-30. | |
25 | 王明华. 新能源电解水制氢技术经济性分析[J]. 现代化工, 2023, 43(5): 1-5. |
WANG Minghua. Technical economic analysis on hydrogen production from water electrolysis by new energy[J]. Modern Chemical Industry, 2023, 43(5): 1-5. | |
26 | 郑博, 白章, 袁宇, 等. 多类型电解协同的风光互补制氢系统与容量优化[J]. 中国电机工程学报, 2022, 42(23): 8486-8496. |
ZHENG Bo, BAI Zhang, YUAN Yu, et al. Hydrogen production system and capacity optimization based on synergistic operation with multi-type electrolyzers under wind-solar power[J]. Proceedings of the CSEE, 2022, 42(23): 8486-8496. | |
27 | 徐钢, 张钟, 吴志聪, 等. 基于绿氢和生物质富氧燃烧技术的零碳甲醇合成系统[J]. 动力工程学报, 2022, 42(10): 925-932. |
XU Gang, ZHANG Zhong, WU Zhicong, et al. Zero carbon methanol synthesis system based on green hydrogen and biomass oxygen enriched combustion technology[J]. Journal of Chinese Society of Power Engineering, 2022, 42(10): 925-932. | |
28 | 张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371. |
ZHANG Xuan, FAN Xinye, WU Zhenyu, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371. |
[1] | LI Xinyue, LI Zhenjing, HAN Yihang, GUO Yongqiang, YAN Yu, KAREMULATI Halimire, ZHAO Huiji, CHAI Yongming, LIU Dong, YIN Changlong. Research progress on catalysts for the production of green diesel by hydrodeoxidation of lipid [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 351-364. |
[2] | WANG Yue, ZHANG Xuerui, SONG Xiwen, CHEN Boyan, LI Qingxun, ZHONG Haijun, HU Xiaowei, HE Shuai. Overview and prospect of ammonia synthesis with hydrogen produced via water electrolysis [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 180-188. |
[3] | WANG Yuhua, ZHOU Xue, GU Chuantao. Recent advances in regioregular polymerized small-molecule acceptors for high-performance all-polymer solar cells [J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 391-402. |
[4] | JIANG Huizhen, LUO Kai, WANG Yan, FEI Hua, WU Dengke, YE Zhuocheng, CAO Xiongjin. Construction and application of waste biomass composite phase change materials [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3934-3945. |
[5] | WANG Yingjie, ZHU Xinli. Highly dispersed Ni-Cu/SiO2 synthesized by sol-gel method for prompting direct deoxygenation of m-cresol to toluene [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3824-3833. |
[6] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
[7] | WAN Chengfeng, LI Zhida, ZHANG Chunyue, LU Lu. Highly efficient electrocatalytic water splitting by MXene supported CoP nanorods [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3232-3239. |
[8] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
[9] | CHEN Keyu, XU Jinxin, WU Guibo, YANG Zhe, CHEN Jiahong, CHEN Yongli. Current situation and development prospect of green ammonia industry [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2544-2553. |
[10] | ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644. |
[11] |
DING Jia, WU Wenqi, LI Pengcheng.
Two-electron water oxidation reaction assisted electrochemical oxidation with boron doped diamond to inhibit ClO |
[12] | GUO Meng, GUO Meixin, WEI Sijia, ZHAO Yujiao, JIA Xuan. Effect of pH on MEC desulfurization performance and microbial mechanism of action [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2219-2225. |
[13] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[14] | HU Zhihao, ZHANG Haojing, ZHOU Ye, WU Rui. Visualization observation of bubble behavior and performance impact analysis in efficient nickel based ordered porous electrodes [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 680-687. |
[15] | MA Yan, GAO Ningbo, SUN Anbang, QUAN Cui. Integrated plastics pyrolysis and plasma-catalysis reforming for H2 production [J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5901-5912. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |