1 |
HU Zhiqiang, ZHOU Jian, FU Qiang. Design and construction of deformable heaters: Materials, structure, and applications[J]. Advanced Electronic Materials, 2021, 7(11): 2100459.
|
2 |
Volker DREIßIGACKER. Thermal battery for electric vehicles: High-temperature heating system for solid media based thermal energy storages[J]. Applied Sciences, 2021, 11(21): 10500.
|
3 |
WANG Ran, XU Zhen, ZHUANG Jihan, et al. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters[J]. Advanced Electronic Materials, 2017, 3(2): 1600425.
|
4 |
ZHANG Jizhen, KONG Na, UZUN Simge, et al. Scalable manufacturing of free-standing, strong Ti3C2T x MXene films with outstanding conductivity[J]. Advanced Materials, 2020, 32(23): 2001093.
|
5 |
SUI Dong, HUANG Yi, HUANG Lu, et al. Flexible and transparent electrothermal film heaters based on graphene materials[J]. Small, 2011, 7(22): 3186-3192.
|
6 |
MA Aijie, WEI Jinming, WU Yinghao, et al. A novel directional repairing rGO-Fe3O4/oil coating with magnetic driving for metal protection and self-healing[J]. Chemical Engineering Journal, 2021, 421: 129597.
|
7 |
JANAS Dawid, KOZIOL Krzysztof K. Rapid electrothermal response of high-temperature carbon nanotube film heaters[J]. Carbon, 2013, 59: 457-463.
|
8 |
QIN Yuying, XIE Yuhao, ZHAO Han, et al. Scalable synthesis of macroscopic porous carbon sheet anode for potassium-ion capacitor[J]. Chinese Chemical Letters, 2022, 33(3): 1463-1467.
|
9 |
HAN Zhijia, SHEN Shengfei, LI Zaiyuan. Study on preparation of nanocarbon black-polypropylene electric conduction composite materials[J]. Advanced Materials Research, 2013, 785/786: 183-186.
|
10 |
YAO Xudan, HAWKINS Stephen C, FALZON Brian G. An advanced anti-icing/de-icing system utilizing highly aligned carbon nanotube webs[J]. Carbon, 2018, 136: 130-138.
|
11 |
VERTUCCIO L, DE SANTIS F, PANTANI R, et al. Effective de-icing skin using graphene-based flexible heater[J]. Composites Part B: Engineering, 2019, 162: 600-610.
|
12 |
DEOKAR Geetanjali, REGUIG Abdeldjalil, TRIPATHI Manoj, et al. Flexible, air-stable, high-performance heaters based on nanoscale-thick graphite films[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17899-17910.
|
13 |
ISAJI Setsuko, Yuezhen BIN, MATSUO Masaru. Electrical conductivity and self-temperature-control heating properties of carbon nanotubes filled polyethylene films[J]. Polymer, 2009, 50(4): 1046-1053.
|
14 |
Seunghwan NOH, SONG Youngjun. Elastic CNT nanocomposites for Joule heating and tactic sensing devices[J]. Mechanics of Advanced Materials and Structures, 2022, 29(13): 1874-1882.
|
15 |
PARK Mina, LEE Dong-Myeong, PARK Min, et al. Performance enhancement of graphene assisted CNT/Cu composites for lightweight electrical cables[J]. Carbon, 2021, 179: 53-59.
|
16 |
SUBRAMANIAM Chandramouli, YAMADA Takeo, KOBASHI Kazufumi, et al. One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite[J]. Nature Communications, 2013, 4: 2202.
|
17 |
SOMALU M R, YUFIT V, SHAPIRO I P, et al. The impact of ink rheology on the properties of screen-printed solid oxide fuel cell anodes[J]. International Journal of Hydrogen Energy, 2013, 38(16): 6789-6801.
|
18 |
PARK Hyeon Ki, KIM Soo Min, LEE Joo Song, et al. Flexible plane heater: Graphite and carbon nanotube hybrid nanocomposite[J]. Synthetic Metals, 2015, 203: 127-134.
|
19 |
ARAPOV Kirill, Guy BEX, HENDRIKS Rob, et al. Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling[J]. Advanced Engineering Materials, 2016, 18(7): 1234-1239.
|
20 |
LIU Lixin, SHEN Zhigang, ZHANG Xiaojing, et al. Highly conductive graphene/carbon black screen printing inks for flexible electronics[J]. Journal of Colloid and Interface Science, 2021, 582: 12-21.
|
21 |
TRAN Tuan Sang, DUTTA Naba Kumar, CHOUDHURY Namita Roy. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications[J]. Advances in Colloid and Interface Science, 2018, 261: 41-61.
|
22 |
YANG Xiao, LI Xiaoming, KONG Qingqiang, et al. One-pot ball-milling preparation of graphene/carbon black aqueous inks for highly conductive and flexible printed electronics[J]. Science China Materials, 2020, 63(3): 392-402.
|
23 |
李川, 张小娜. 石墨烯材料的制备方法和中国石墨烯产业现状[J]. 中国陶瓷, 2018, 54(4): 9-13.
|
|
LI Chuan, ZHANG Xiaona. Preparation methods of graphene materials and the industry present situation in China[J]. China Ceramics, 2018, 54(4): 9-13.
|
24 |
YANG Fei, YU Chen, ZHANG Li, et al. High-performance electrothermal film based on laser-induced graphene[J]. Advanced Engineering Materials, 2022, 24(11): 2200368.
|
25 |
LIU Huanhuan, GU Senlin, CAO Huan, et al. A dense packing structure constructed by flake and spherical graphite: Simultaneously enhanced in-plane and through-plane thermal conductivity of polypropylene/graphite composites[J]. Composites Communications, 2020, 19: 25-29.
|
26 |
SUN Jianwei, WANG Liqin, GU Le. Tribological performance of PTFE composites filled with spherical-graphite[J]. Advanced Materials Research, 2011, 197/198: 1184-1187.
|
27 |
付雨龙. 天然石墨球形尾料造粒制备高性能锂电负极材料[D]. 太原: 太原理工大学, 2022.
|
|
FU Yulong. Preparation of high performance lithium anode materials by granulation of natural graphite spherical tailings[D]. Taiyuan: Taiyuan University of Technology, 2022.
|
28 |
MUKHOPADHYAY Amartya, GUO Fei, TOKRANOV Anton, et al. Engineering of graphene layer orientation to attain high rate capability and anisotropic properties in Li-ion battery electrodes[J]. Advanced Functional Materials, 2013, 23(19): 2397-2404.
|
29 |
WU Xuan, YANG Xuelin, ZHANG Fei, et al. Carbon-coated isotropic natural graphite spheres as anode material for lithium-ion batteries[J]. Ceramics International, 2017, 43(12): 9458-9464.
|
30 |
WANG Hongyu, IKEDA Taisa, FUKUDA Kenji, et al. Effect of milling on the electrochemical performance of natural graphite as an anode material for lithium-ion battery[J]. Journal of Power Sources, 1999, 83(1/2): 141-147.
|
31 |
叶青, 胡国君, 张泽南. 掺石墨水泥基导电材料的物理性能研究[J]. 硅酸盐通报, 1995, 14(6): 37-40.
|
|
YE Qing, HU Guojun, ZHANG Zenan. Research on the physical properties of ceinent conductible materials containing flake graphite[J]. Bulletin of the Chinese Ceramic Society, 1995, 14(6): 37-40.
|