Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (7): 3923-3933.DOI: 10.16085/j.issn.1000-6613.2023-1010
• Materials science and technology • Previous Articles
TANG Anqi(), WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun()
Received:
2023-06-20
Revised:
2023-09-08
Online:
2024-08-14
Published:
2024-07-10
Contact:
LIU Yiqun
唐安琪(), 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群()
通讯作者:
刘轶群
作者简介:
唐安琪(1994—),女,工程师,博士,研究方向为分离膜材料与技术。E-mail:tangaq.bjhy@sinopec.com。
CLC Number:
TANG Anqi, WEI Xin, DING Liming, WANG Yujie, XU Yixiao, LIU Yiqun. Discussing physical aging phenomenon of polyimide gas separation membranes[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3923-3933.
唐安琪, 魏昕, 丁黎明, 王玉杰, 徐一潇, 刘轶群. 聚酰亚胺气体分离膜的物理老化现象浅析[J]. 化工进展, 2024, 43(7): 3923-3933.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1010
1 | KOROS W J, FLEMING G K. Membrane-based gas separation[J]. Journal of Membrane Science, 1993, 83(1): 1-80. |
2 | BAKER R W, Bee Ting LOW. Gas separation membrane materials: A perspective[J]. Macromolecules, 2014, 47(20): 6999-7013. |
3 | SANAEEPUR H, EBADI AMOOGHIN A, BANDEHALI S, et al. Polyimides in membrane gas separation: Monomer’s molecular design and structural engineering[J]. Progress in Polymer Science, 2019, 91: 80-125. |
4 | QIU Wulin, XU Liren, CHEN Chien-Chiang, et al. Gas separation performance of 6FDA-based polyimides with different chemical structures[J]. Polymer, 2013, 54(22): 6226-6235. |
5 | XU Zhen, CROFT Z L, GUO Dong, et al. Recent development of polyimides: Synthesis, processing, and application in gas separation[J]. Journal of Polymer Science, 2021, 59(11): 943-962. |
6 | WOOCK T, BJORGAARD S, TANDE Brian, et al. Purification of natural gas using thermally rearranged polybenzoxazole and polyimide membranes-A review: Part 1[J]. Membrane Technology, 2016, 2016(9): 7-12. |
7 | Ze-Xian LOW, BUDD P M, MCKEOWN N B, et al. Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers[J]. Chemical Reviews, 2018, 118(12): 5871-5911. |
8 | HUTCHINSON J M. Physical aging of polymers[J]. Progress in Polymer Science, 1995, 20(4): 703-760. |
9 | REZAC M E, PFROMM P H, COSTELLO L M, et al. Aging of thin polyimide-ceramic and polycarbonate-ceramic composite membranes[J]. Industrial & Engineering Chemistry Research, 1993, 32(9): 1921-1926. |
10 | LIN Wenhui, CHUNG Tai-Shung. Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes[J]. Journal of Membrane Science, 2001, 186(2): 183-193. |
11 | KIM J H, KOROS W J, PAUL D R. Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part II. Optical properties[J]. Polymer, 2006, 47(9): 3104-3111. |
12 | FU Ywu-Jang, HSIAO Sheng-Wen, HU Chien-Chieh, et al. Effect of physical aging on sorption and permeation of small molecules in polyimide membranes[J]. Desalination, 2008, 234(1/2/3): 58-65. |
13 | STRUIK L C E. Physical aging in plastics and other glassy materials[J]. Polymer Engineering & Science, 1977, 17(3): 165-173. |
14 | KIM J H, KOROS W J, PAUL D R. Physical aging of thin 6FDA-based polyimide membranes containing carboxyl acid groups. Part Ⅰ. Transport properties[J]. Polymer, 2006, 47(9): 3094-3103. |
15 | MCCAIG M S, PAUL D R. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging. Part Ⅰ. Experimental observations[J]. Polymer, 2000, 41(2): 629-637. |
16 | MCCAIG M S, PAUL D R, BARLOW J W. Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical aging Part Ⅱ. Mathematical model[J]. Polymer, 2000, 41(2): 639-648. |
17 | XIAO Youchang, Bee Ting LOW, HOSSEINI S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Progress in Polymer Science, 2009, 34(6): 561-580. |
18 | CURRO J G, LAGASSE R R, SIMHA Robert. Diffusion model for volume recovery in glasses[J]. Macromolecules, 1982, 15(6): 1621-1626. |
19 | 丁晓莉, 曹义鸣, 赵红永, 等. 聚酰亚胺中空纤维气体分离膜的物理老化现象[J]. 高校化学工程学报, 2010, 24(3): 382-387. |
DING Xiaoli, CAO Yiming, ZHAO Hongyong, et al. The physical aging phenomenon of polyimide hollow fiber membranes for gas separation[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(3): 382-387. | |
20 | KAWAKAMI H, MIKAWA M, NAGAOKA S. Gas transport properties in thermally cured aromatic polyimide membranes[J]. Journal of Membrane Science, 1996, 118(2): 223-230. |
21 | KOROS W. Elevated temperature application of polymer hollow-fiber membranes[J]. Journal of Membrane Science, 2001, 181(2): 157-166. |
22 | WIENEKE J U, STAUDT C. Thermal stability of 6 F D A - ( c o - ) polyimides containing carboxylic acid groups[J]. Polymer Degradation and Stability, 2010, 95(4): 684-693. |
23 | ZHOU Chun, CHUNG Tai-Shung, WANG Rong, et al. A governing equation for physical aging of thick and thin fluoropolyimide films[J]. Journal of Applied Polymer Science, 2004, 92(3): 1758-1764. |
24 | CUI Lili, QIU Wulin, PAUL D R, et al. Physical aging of 6FDA-based polyimide membranes monitored by gas permeability[J]. Polymer, 2011, 52(15): 3374-3380. |
25 | LIN Wenhui, CHUNG Tai-Shung. The physical aging phenomenon of 6FDA-durene polyimide hollow fiber membranes[J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(5): 765-775. |
26 | PFROMM P H, PINNAU I, KOROS W J. Gas transport through integral-asymmetric membranes: A comparison to isotropic film transport properties[J]. Journal of Applied Polymer Science, 1993, 48(12): 2161-2171. |
27 | CHUNG Tai-Shung, LIN Wenhui, VORA R H. The effect of shear rates on gas separation performance of 6FDA-durene polyimide hollow fibers[J]. Journal of Membrane Science, 2000, 167(1): 55-66. |
28 | CHUNG Tai-Shung, KAFCHINSKI E R. Aging phenomenon of 6FDA-polyimide/polyacrylonitrile composite hollow fibers[J]. Journal of Applied Polymer Science, 1996, 59(1): 77-82. |
29 | YOSHINO M, NAKAMURA S, KITA H, et al. Olefin/paraffin separation performance of asymmetric hollow fiber membrane of 6FDA/BPDA-DDBT copolyimide[J]. Journal of Membrane Science, 2003, 212(1/2): 13-27. |
30 | SWAIDAN R, GHANEM B, LITWILLER E, et al. Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity[J]. Macromolecules, 2015, 48(18): 6553-6561. |
31 | LUO Shuangjiang, WIEGAND J R, GAO Peiyuan, et al. Molecular origins of fast and selective gas transport in pentiptycene-containing polyimide membranes and their physical aging behavior[J]. Journal of Membrane Science, 2016, 518: 100-109. |
32 | ALGHUNAIMI F, GHANEM B, ALASLAI N, et al. Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides[J]. Journal of Membrane Science, 2015, 490: 321-327. |
33 | WANG Yingge, GHANEM B S, HAN Yu, et al. Facile synthesis and gas transport properties of Hünlich’s base-derived intrinsically microporous polyimides[J]. Polymer, 2020, 201: 122619. |
34 | KANG Shuanyan, ZHANG Zhiguang, WU Lei, et al. Synthesis and gas separation properties of polyimide membranes derived from oxygencyclic pseudo-Tröger’s base[J]. Journal of Membrane Science, 2021, 637: 119604. |
35 | XIAO Yuyang, LEI Xingfeng, LIU Yang, et al. Double-decker-shaped phenyl-substituted silsesquioxane (DDSQ)-based nanocomposite polyimide membranes with tunable gas permeability and good aging resistance[J]. Separation and Purification Technology, 2023, 315: 123725. |
36 | WEIDMAN J R, LUO Shuangjiang, DOHERTY C M, et al. Analysis of governing factors controlling gas transport through fresh and aged triptycene-based polyimide films[J]. Journal of Membrane Science, 2017, 522: 12-22. |
37 | ZHANG Zhiguang, REN Xiaolong, HUO Guolong, et al. Tuning interchain cavity of fluorinated polyimide by DABA for improved gas separation performance[J]. Journal of Membrane Science, 2023, 675: 121485. |
38 | ZHOU Fangbin, KOROS W J. Study of thermal annealing on Matrimid® fiber performance in pervaporation of acetic acid and water mixtures[J]. Polymer, 2006, 47(1): 280-288. |
39 | VANHERCK K, KOECKELBERGHS G, VANKELECOM I F J. Crosslinking polyimides for membrane applications: A review[J]. Progress in Polymer Science, 2013, 38(6): 874-896. |
40 | KROL J J, BOERRIGTER M, KOOPS G H. Polyimide hollow fiber gas separation membranes: Preparation and the suppression of plasticization in propane/propylene environments[J]. Journal of Membrane Science, 2001, 184(2): 275-286. |
41 | CHEN Xiuling, ZHANG Zhiguang, WU Lei, et al. Hydrogen bonding-induced 6FDA-DABA/TB polymer blends for high performance gas separation membranes[J]. Journal of Membrane Science, 2022, 655: 120575. |
42 | ROBESON L M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. |
43 | FUHRMAN C, NUTT M, VICHTOVONGA K, et al. Effect of thermal hysteresis on the gas permeation properties of 6FDA-based polyimides[J]. Journal of Applied Polymer Science, 2004, 91(2): 1174-1182. |
44 | MCCAIG M S, PAUL D R. Effect of UV crosslinking and physical aging on the gas permeability of thin glassy polyarylate films[J]. Polymer, 1999, 40(26): 7209-7225. |
45 | KIM J H, KOROS W J, PAUL D R. Effects of CO2 exposure and physical aging on the gas permeability of thin 6FDA-based polyimide membranes: Part 2. With crosslinking[J]. Journal of Membrane Science, 2006, 282(1): 32-43. |
46 | LIU Ye, WANG Rong, CHUNG Tai-Shung. Chemical cross-linking modification of polyimide membranes for gas separation[J]. Journal of Membrane Science, 2001, 189(2): 231-239. |
47 | ZHOU Chun, CHUNG Tai-Shung, WANG Rong, et al. The accelerated CO2 plasticization of ultra-thin polyimide films and the effect of surface chemical cross-linking on plasticization and physical aging[J]. Journal of Membrane Science, 2003, 225(1/2): 125-134. |
48 | POWELL C E, DUTHIE X J, KENTISH S E, et al. Reversible diamine cross-linking of polyimide membranes[J]. Journal of Membrane Science, 2007, 291(1/2): 199-209. |
49 | CUI Lili, QIU Wulin, PAUL D R, et al. Responses of 6FDA-based polyimide thin membranes to CO2 exposure and physical aging as monitored by gas permeability[J]. Polymer, 2011, 52(24): 5528-5537. |
50 | TIAN Zhikang, CAO Bing, LI Pei. Effects of sub-Tg cross-linking of triptycene-based polyimides on gas permeation, plasticization resistance and physical aging properties[J]. Journal of Membrane Science, 2018, 560: 87-96. |
51 | WARD J K, KOROS W J. Crosslinkable mixed matrix membranes with surface modified molecular sieves for natural gas purification: Ⅱ. Performance characterization under contaminated feed conditions[J]. Journal of Membrane Science, 2011, 377(1/2): 82-88. |
52 | TAN Xiaoyu, ROBIJNS S, THÜR R, et al. Truly combining the advantages of polymeric and zeolite membranes for gas separations[J]. Science, 2022, 378(6625): 1189-1194. |
53 | SONG Shuqing, ZHAO Mingang, GUO Zheyuan, et al. Mixed matrix composite membranes with MOF-protruding structure for efficient CO2 separation[J]. Journal of Membrane Science, 2023, 669: 121340. |
54 | YANG Yanqin, Kunli GOH, WEERACHANCHAI P, et al. 3D covalent organic framework for morphologically induced high-performance membranes with strong resistance toward physical aging[J]. Journal of Membrane Science, 2019, 574: 235-242. |
55 | LIU Tongxin, ZHANG Ruili, SI Guangrui, et al. Molecularly homogenized composite membranes containing solvent-soluble metallocavitands for CO2/CH4 separation[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(40): 13534-13544. |
[1] | DING Lu, WANG Peiyao, KONG Lingxue, BAI Jin, YU Guangsuo, LI Wen, WANG Fuchen. Progress on reaction models for coal gasification processes [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3593-3612. |
[2] | GONG Decheng, SHEN Qian, ZHU Xianqing, HUANG Yun, XIA Ao, ZHANG Jingmiao, ZHU Xun, LIAO Qiang. Recent progress in the production of hydrogen-rich syngas via supercritical water gasification of microalgae [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3709-3728. |
[3] | CHEN Liang, LUO Dongmei, WANG Zhenghao, ZHONG Shan, TANG Siyang, LIANG Bin. Research progress of industrial by-product gas-fueled chemical looping hydrogen generation technology [J]. Chemical Industry and Engineering Progress, 2024, 43(7): 3729-3746. |
[4] | MA Jiahui, WANG Yibin, FENG Jingwu, TAN Houzhang, LIN Chi. Experimental of CO2 mineralization by industrial containing calcium solid wastes [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3440-3449. |
[5] | MA Dong, XIE Guilin, TIAN Zhihua, WANG Qinhui, ZHANG Jianguo, SONG Huilin, ZHONG Jin. Analysis of high temperature reduction process of phosphogypsum by coal gasification fine slag in fluidized bed [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3479-3491. |
[6] | LI Yanan, GUO Kai, WANG Jiaqi, WU Yaning. Comparison of phenol degradation by persulfate and peroxymonosulfate activated with coal gasification slag [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3503-3512. |
[7] | LI Yan, WU Qin, CHEN Kangcheng, ZHANG Yaoyuan, SHI Daxin, LI Hansheng. Modified polyimide pervaporation membranes for dehydration of organic solvent [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2915-2927. |
[8] | WANG Qingtai, ZHANG Sai, WANG Jiemin. Numerical simulation for non-uniform compression of porous electrodes in vanadium flow batteries [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2940-2949. |
[9] | XIONG Yuanfan, LI Huashan, GONG Yulie. Multi-objective optimal design of evaporative condenser using zeotropic working fluid [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2950-2960. |
[10] | ZHENG Suoqi, ZHAN Lingxiao, CHEN Heng, LI Zhihao, WANG Yurui, ZHAO Ning, WU Hao, YANG Linjun. Hybrid modeling for energy consumption prediction of desulfurization wastewater bypass evaporation system [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2968-2976. |
[11] | YANG Panbin, DING Guodong, CHEN Jiaqing, FENG Zixia, ZHENG Jiayuan. Working performance of jet strengthening non-packing dissolved air equipment [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2977-2985. |
[12] | YI Zhikang, LIU Siqi, CUI Guomin, DUAN Huanhuan, XIAO Yuan. A chessboard model for incompatible multi-component mass exchange network optimization [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2986-2995. |
[13] | ZHANG Dongxu, LIU Cheng, SONG Lechun, HUANG Qiyu, WANG Wei. Nucleation process of gas hydrates in the emulsion system: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3007-3020. |
[14] | ZHANG Zhen, ZHANG Fan, YUN Zhiting. Carbon reduction and techno-economic analysis of using green hydrogen in chemical and petrochemical industry [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3021-3028. |
[15] | MU Lianbo, WANG Suilin, LU Junhui, LIU Guichang, ZHAO Liqiu, LIU Jincheng, HAO Anfeng, ZHANG Tong. Analysis of flue gas deep waste heat recovery with cooperative flue gas pressure control for alkane dehydrogenation heating furnace [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3029-3041. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |