Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3492-3502.DOI: 10.16085/j.issn.1000-6613.2023-0891
• Resources and environmental engineering • Previous Articles
LIU Mengfan(), WANG Huawei(), WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie
Received:
2023-05-30
Revised:
2023-07-11
Online:
2024-07-02
Published:
2024-06-15
Contact:
WANG Huawei
刘梦凡(), 王华伟(), 王亚楠, 张艳茹, 蒋旭彤, 孙英杰
通讯作者:
王华伟
作者简介:
刘梦凡(2002—),女,本科生,主要研究方向为水污染环境修复。E-mail: winniene@qq.com。
基金资助:
CLC Number:
LIU Mengfan, WANG Huawei, WANG Yanan, ZHANG Yanru, JIANG Xutong, SUN Yingjie. Efficiency and mechanism of Bio-FeMnCeO x activated PMS for degradation of tetracycline[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3492-3502.
刘梦凡, 王华伟, 王亚楠, 张艳茹, 蒋旭彤, 孙英杰. Bio-FeMnCeO x 活化PMS降解四环素效能与机制[J]. 化工进展, 2024, 43(6): 3492-3502.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0891
制备参数 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
Ce剂量 | |||
Ce-5 | 17.79 | 0.015 | 3.38 |
Ce-10 | 19.13 | 0.018 | 2.52 |
Ce-25 | 26.15 | 0.030 | 2.00 |
Ce-50 | 26.22 | 0.031 | 2.19 |
Ce-100 | 21.23 | 0.022 | 2.52 |
培养时间 | |||
3d | 36.57 | 0.037 | 1.75 |
5d | 23.56 | 0.022 | 1.63 |
7d | 22.09 | 0.025 | 2.19 |
9d | 45.34 | 0.048 | 1.88 |
11d | 52.07 | 0.043 | 1.63 |
制备参数 | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 平均孔径/nm |
---|---|---|---|
Ce剂量 | |||
Ce-5 | 17.79 | 0.015 | 3.38 |
Ce-10 | 19.13 | 0.018 | 2.52 |
Ce-25 | 26.15 | 0.030 | 2.00 |
Ce-50 | 26.22 | 0.031 | 2.19 |
Ce-100 | 21.23 | 0.022 | 2.52 |
培养时间 | |||
3d | 36.57 | 0.037 | 1.75 |
5d | 23.56 | 0.022 | 1.63 |
7d | 22.09 | 0.025 | 2.19 |
9d | 45.34 | 0.048 | 1.88 |
11d | 52.07 | 0.043 | 1.63 |
催化剂 | 条件 | 效率 | 参考文献 |
---|---|---|---|
磁性生物炭 | TC 20mg/L,PMS 0.07mmol/L,催化剂0.75g/L,120min | 85.50% | [ |
B-NC | TC 20mg/L,PMS 0.16mmol/L,催化剂0.13g/L,60min | 90.00% | [ |
PFSC-900 | TC 20mg/L,PMS 0.3g/L,催化剂0.4g/L,120min | 90.10% | [ |
Fe-N-CS-800 | TC 20mg/L,PMS 1mmol/L,催化剂0.2g/L,12min | 93.74% | [ |
Bio-FeMnCeO x | TC 20mg/L,PMS 10.2g/L,催化剂0.1g/L,60min | 93.75% | 本研究 |
催化剂 | 条件 | 效率 | 参考文献 |
---|---|---|---|
磁性生物炭 | TC 20mg/L,PMS 0.07mmol/L,催化剂0.75g/L,120min | 85.50% | [ |
B-NC | TC 20mg/L,PMS 0.16mmol/L,催化剂0.13g/L,60min | 90.00% | [ |
PFSC-900 | TC 20mg/L,PMS 0.3g/L,催化剂0.4g/L,120min | 90.10% | [ |
Fe-N-CS-800 | TC 20mg/L,PMS 1mmol/L,催化剂0.2g/L,12min | 93.74% | [ |
Bio-FeMnCeO x | TC 20mg/L,PMS 10.2g/L,催化剂0.1g/L,60min | 93.75% | 本研究 |
1 | HUTCHINGS M I, TRUMAN A W, WILKINSON B. Antibiotics: Past, present and future[J]. Current Opinion in Microbiology, 2019, 51: 72-80. |
2 | 王振楠, 白默涵, 李晓晶, 等. 微生物降解四环素类抗生素的研究进展[J]. 农业环境科学学报, 2022, 41(12): 2779-2786. |
WANG Zhennan, BAI Mohan, LI Xiaojing, et al. Research progress on the microbial degradation of tetracycline antibiotics[J]. Journal of Agro-Environment Science, 2022, 41(12): 2779-2786 | |
3 | KLAUS K. Antibiotics in the aquatic environment — A review — Part I[J]. Chemosphere, 2009, 75(4): 417-434. |
4 | M-C DANNER, ROBERTSON A, BEHRENDS V, et al. Antibiotic pollution in surface fresh waters: Occurrence and effects[J]. Science of the Total Environment, 2019, 664: 793-804. |
5 | ZHOU Qianqian, HONG Peidong, SHI Xu, et al. Efficient degradation of tetracycline by a novel nanoconfinement structure Cu2O/Cu@MXene composite[J]. Journal of Hazardous Materials, 2023, 448: 130995. |
6 | AMARASIRI M, SANO D, SUZUKI S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(19): 2016-2059. |
7 | CAI Yanan, HE Jing, ZHANG Jinkang, et al. Antibiotic contamination control mediated by manganese oxidizing bacteria in a lab-scale biofilter[J]. Journal of Environmental Sciences, 2020, 98: 47-54. |
8 | CHENG Dongle, Huu Hao NGO, GUO Wenshan, et al. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches[J]. Journal of Hazardous Materials, 2020, 387: 121682. |
9 | LI Zhen, LI Miao, ZHANG Zhenya, et al. Antibiotics in aquatic environments of China: A review and meta-analysis[J]. Ecotoxicology and Environmental Safety, 2020, 199: 110668. |
10 | WANG Jianlong, CHU Libing, WOJNÁROVITS L, et al. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview[J]. Science of the Total Environment, 2020, 744: 140997. |
11 | 唐海芳. 光/电催化/过硫酸盐氧化及耦合生物技术处理含抗生素废水[D]. 长沙: 湖南大学, 2021. |
TANG Haifang. Treatment of antibiotics-containing wastewater by photo/electrocatalysis/persulphate oxidation coupled with biotechnology[D]. Changsha: Hunan University, 2021. | |
12 | 陈建发, 林诚, 刘福权. 复合工艺处理以抗生素类制药为主的混合工业废水[J]. 工业水处理, 2014, 34(10): 91-94. |
CHEN Jianfa, LIN Cheng, LIU Fuquan. Studies on the treatment of antibiotics pharmacy-based mixed industrial wastewater using composite technology[J]. Industrial Water Treatment, 2014, 34(10): 91-94. | |
13 | ZHU Tingting, SU Zhongxian, LAI Wenxia, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of the Total Environment, 2021, 776: 145906. |
14 | 郑常春, 李孝洪. 高级氧化法处理化工废水的应用研究[J]. 精细与专用化学品, 2017, 25(9): 36-41. |
ZHENG Changchun, LI Xiaohong. Study on the application of advanced oxidation process in chemical wastewater treatment[J]. Fine and Specialty Chemicals, 2017, 25(9): 36-41. | |
15 | AKBARI M Z, XU Yifeng, LU Zhikun, et al. Review of antibiotics treatment by advance oxidation processes[J]. Environmental Advances, 2021, 5: 100111. |
16 | WANG Jianlong, ZHUAN Run. Degradation of antibiotics by advanced oxidation processes: An overview[J]. Science of the Total Environment, 2020, 701: 135023. |
17 | 谢金伶, 蒲佳兴, 李思域, 等. 钴锰硫化物活化过硫酸盐强化降解盐酸四环素[J]. 中国环境科学, 2023, 43(2): 544-551. |
XIE Jinling, PU Jiaxing, LI Siyu, et al. Enhanced degradation of tetracycline hydrochloride by cobalt-manganese sulfide activated peroxymonosulfate[J]. China Environmental Science, 2023, 43(2): 544-551. | |
18 | GHANBARI F, MORADI M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review[J]. Chemical Engineering Journal, 2017, 310: 41-62. |
19 | 朱紫琦, 李立, 徐铭骏, 等. 菱形片状铁锰催化剂活化过硫酸盐降解四环素[J]. 中国环境科学, 2021, 41(11): 5142-5152. |
ZHU Ziqi, LI Li, XU Mingjun, et al. Rhombic sheet iron-manganese catalyst-activating peroxymonosulfate for tetracycline degradation[J]. China Environmental Science, 2021, 41(11): 5142-5152. | |
20 | 黄全佳. 纳米铁锰混合金属氧化物活化过一硫酸盐降解染料废水[J]. 环境污染与防治, 2021, 43(10): 1263-1268. |
HUANG Quanjia. Degradation of dye wastewater by nano iron-manganese mixed metal oxides activating peroxymonosulfate[J]. Environmental Pollution & Control, 2021, 43(10): 1263-1268. | |
21 | 朱建宇, 党清平, 杨帆, 等. MnFeCu-LDHs活化PMS降解氯四环素的效能及机制[J]. 环境工程学报, 2022, 16(12): 3895-3905. |
ZHU Jianyu, DANG Qingping, YANG Fan, et al. Degradation efficiency and mechanism of chlortetracycline by activation of peroxymonosulfate via MnFeCu-LDHs[J]. Chinese Journal of Environmental Engineering, 2022, 16(12): 3895-3905. | |
22 | DU Zhiling, ZHANG Yunhai, XU Anlin, et al. Biogenic metal nanoparticles with microbes and their applications in water treatment: A review[J]. Environmental Science and Pollution Research, 2022, 29(3): 3213-3229. |
23 | TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic Manganese Oxides: Properties and mechanisms of formation[J]. Annual Review of Earth and Planetary Sciences, 2004, 32: 287-328. |
24 | LI Kangjie, XU Anlin, WU Donghong, et al. Degradation of ofloxacin by a manganese-oxidizing bacterium Pseudomonas sp. F2 and its biogenic manganese oxides[J]. Bioresource Technology, 2021, 328: 124826. |
25 | DU Zhiling, LI Kangjie, ZHOU Shuangxi, et al. Degradation of ofloxacin with heterogeneous photo-Fenton catalyzed by biogenic Fe-Mn oxides[J]. Chemical Engineering Journal, 2020, 380: 122427. |
26 | XU Anlin, MENG Tong, FAN Siyan, et al. Bio-synthesized multi-metal oxides with varying Fe/Mn ratios and transitional metals (Ni, Ce, Al, Cu) for catalytic ozonation[J]. Journal of Environmental Chemical Engineering, 2023, 11(1): 109124. |
27 | XU Anlin, WU Donghong, ZHANG Ren, et al. Bio-synthesis of Co-doped FeMnO x and its efficient activation of peroxymonosulfate for the degradation of moxifloxacin[J]. Chemical Engineering Journal, 2022, 435: 134695. |
28 | WANG Anqi, ZHENG Zhikeng, WANG Hui, et al. 3D hierarchical H2-reduced Mn-doped CeO2 microflowers assembled from nanotubes as a high-performance Fenton-like photocatalyst for tetracycline antibiotics degradation[J]. Applied Catalysis B: Environmental, 2020, 277: 119171. |
29 | XU Anlin, FAN Siyan, MENG Tong, et al. Catalytic ozonation with biogenic Fe-Mn-Co oxides: Biosynthesis protocol and catalytic performance[J]. Applied Catalysis B: Environmental, 2022, 318: 121833. |
30 | VILLALOBOS M, TONER B, BARGAR J, et al. Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1[J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2649-2662. |
31 | QIN Songyan, LIU Xiaolong, Wujuan LYU, et al. The mechanism of degradation polycyclic aromatic hydrocarbons by magnetic biogenic manganese oxides[J]. Biochemical Engineering Journal, 2023, 191: 108803. |
32 | MA Chuanxin, CHHIKARA S, XING Baoshan, et al. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(7): 768-778. |
33 | QIAN Zihan, QIN Hanli, YAN Wenjie, et al. Enhancing charge transfer efficiency of cerium-iron oxides via Co regulated oxygen vacancies to boost peroxymonosulfate activation for tetracycline degradation[J]. Separation and Purification Technology, 2023, 314: 123524. |
34 | HUANG Guixiang, WANG Chuya, YANG Chuanwang, et al. Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres: Synergism between Mn and Fe[J]. Environmental Science & Technology, 2017, 51(21): 12611-12618. |
35 | LUO Xuewen, SHEN Minxian, LIU Junhong, et al. Resource utilization of piggery sludge to prepare recyclable magnetic biochar for highly efficient degradation of tetracycline through peroxymonosulfate activation[J]. Journal of Cleaner Production, 2021, 294: 126372. |
36 | XIE Jinling, CHEN Liu, LUO Xuan, et al. Degradation of tetracycline hydrochloride through efficient peroxymonosulfate activation by B,N co-doped porous carbon materials derived from metal-organic frameworks: Nonradical pathway mechanism[J]. Separation and Purification Technology, 2022, 281: 119887. |
37 | HU Yi, CHEN Dezhi, ZHANG Rui, et al. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway[J]. Journal of Hazardous Materials, 2021, 419: 126495. |
38 | CHEN Wenjin, HUANG Jin, SHEN Yaqian, et al. Fe-N co-doped coral-like hollow carbon shell toward boosting peroxymonosulfate activation for efficient degradation of tetracycline: Singlet oxygen-dominated non-radical pathway[J]. Journal of Environmental Sciences, 2023, 126: 470-482. |
39 | TIAN Na, TIAN Xike, NIE Yulun, et al. Biogenic manganese oxide: An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water[J]. Chemical Engineering Journal, 2018, 352: 469-476. |
40 | WANG Huawei, ZHANG Daoyong, MOU Shuyong, et al. Simultaneous removal of tetracycline hydrochloride and As(Ⅲ) using poorly-crystalline manganese dioxide[J]. Chemosphere, 2015, 136: 102-110. |
41 | MA Yan, GAO Naiyun, LI Cong. Degradation and pathway of tetracycline hydrochloride in aqueous solution by potassium ferrate[J]. Environmental Engineering Science, 2012, 29(5): 357-362. |
42 | LIANG Fawen, LIU Zhang, JIANG Xueding, et al. NaOH-modified biochar supported Fe/Mn bimetallic composites as efficient peroxymonosulfate activator for enhance tetracycline removal[J]. Chemical Engineering Journal, 2023, 454: 139949. |
43 | ZHOU Yanbo, ZHANG Yongli, HU Xiaomin. Synergistic coupling Co3Fe7 alloy and CoFe2O4 spinel for highly efficient removal of 2,4-dichlorophenol by activating peroxymonosulfate[J]. Chemosphere, 2020, 242: 125244. |
[1] | ZHU Lianyan, ZHOU Xingfu. Mn-doped DSA electrode and optimized application in wastewater treatment process [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3459-3467. |
[2] | YANG Lei, QIU Guangwei, LI Siyan, GE Hongcheng, SUN Yuanyuan, WANG Fei, FAN Xiaoguang. Insulin controlled release carriers based on temperature and glucose dual-response copolymer microcapsules [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3277-3284. |
[3] | XIAO Zisheng, LI Jinling, CHEN Yirui, LAN Zhili, YIN Dulin. g-C3N4 anchored Cu(Ⅰ) highly selective catalytic synthesis of 2,4,4,4-tetrachlorobutyronitrile using CCl4 and acrylonitrile [J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3293-3300. |
[4] | HUANG Zibo, ZHOU Wenjing, WEI Jinjia. Product evolution and reaction mechanism of low-rank coal pyrolysis based on ReaxFF MD simulation [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2409-2419. |
[5] | XIONG Wenting, LUO Qiji, YAN Chungen. Silica-based aerogel materials and their preparation technology from a patent analysis [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1912-1922. |
[6] |
DING Jia, WU Wenqi, LI Pengcheng.
Two-electron water oxidation reaction assisted electrochemical oxidation with boron doped diamond to inhibit ClO |
[7] | LIU Yurong, WANG Xingbao, LI Wenying. Regulation of catalyst acid sites and its effect on the deep hydrogenation performance of anthracene [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1832-1839. |
[8] | DONG Bingyan, LI Zhendong, WANG Peixiang, TU Wenjuan, TAN Yanwen, ZHANG Qin. Performance and mechanism of the degradation of benzohydroxamic acid by DBD plasma-coupled BiOI catalytic materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1565-1575. |
[9] | GUO Yingchun, LIANG Xiaoyi. Effect of citric acid modification on the spherical activated carbon's ammonia adsorption performance [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1082-1088. |
[10] | JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. |
[11] | DAI Hongjing, MA Xuehu, WANG Sifang. Adsorption technology and materials for the treatment of low and intermediate level radioactive wastewater [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 529-540. |
[12] | SUN Yue, WANG Sijia, WU Mingxia, SONG Xianyu, XU Shouhong. Synthesis, performance regulation and application of pH/temperature responsive polymer PMAA-b-PDMAEMA [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 480-489. |
[13] | XU Shiqi, ZHU Ying, CHEN Ninghua, LU Caimei, JIANG Luying, WANG Junhui, QIN Yuelong, ZHANG Hanbing. Effect of environmental factors on the photocatalytic degradation behavior of tetracycline in water [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 551-559. |
[14] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[15] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |