Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3145-3158.DOI: 10.16085/j.issn.1000-6613.2023-0833
• Materials science and technology • Previous Articles
ZHANG Yuxin1(), HUANG Xiaodong1, CHEN Di1, DENG Hangjun2(), WANG Wenjun1, LIU Pingwei1()
Received:
2023-05-19
Revised:
2023-07-13
Online:
2024-07-02
Published:
2024-06-15
Contact:
DENG Hangjun, LIU Pingwei
张妤欣1(), 黄孝东1, 陈迪1, 邓杭军2(), 王文俊1, 刘平伟1()
通讯作者:
邓杭军,刘平伟
作者简介:
张妤欣(1999—),女,博士研究生,研究方向为纳米复合材料。E-mail:zyx999@zju.edu.cn。
基金资助:
CLC Number:
ZHANG Yuxin, HUANG Xiaodong, CHEN Di, DENG Hangjun, WANG Wenjun, LIU Pingwei. Progress in the preparation and ink-jet printing of 2D material-based nano-inks[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3145-3158.
张妤欣, 黄孝东, 陈迪, 邓杭军, 王文俊, 刘平伟. 二维材料纳米油墨的制备及喷墨打印研究进展[J]. 化工进展, 2024, 43(6): 3145-3158.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0833
1 | 刘志豪, 潘艳桥, 冯延冬, 等. 基于电流体喷墨打印直写纳米银浆的柔性应变传感器及其应用[J]. 微纳电子技术, 2023, 60(3): 406-412. |
LIU Zhihao, PAN Yanqiao, FENG Yandong, et al. Flexible strain sensor based on electrohydrodynamic jet printing with directly writing of nano-silver paste and its application[J]. Micronanoelectronic Technology, 2023, 60(3): 406-412. | |
2 | SHARMA Sonia, PANDE Sumukh S, SWAMINATHAN P. Top-down synthesis of zinc oxide based inks for inkjet printing[J]. RSC Advances, 2017, 7(63): 39411-39419. |
3 | ROSEN Yitzchak, MARRACH Roy, GUTKIN Vitaly, et al. Thin copper flakes for conductive inks prepared by decomposition of copper formate and ultrafine wet milling[J]. Advanced Materials Technologies, 2019, 4(1): 1800426. |
4 | KAULING Alan P, SEEFELDT Andressa T, PISONI Diego P, et al. The worldwide graphene flake production[J]. Advanced Materials, 2018, 30(44): e1803784. |
5 | BOOTT Charlotte E, Nazemi ALI, Manners IAN. Synthetic covalent and non-covalent 2D materials[J]. Angewandte Chemie International Edition, 2015, 54(47): 13876-13894. |
6 | SERVALLI Marco, Dieter SCHLÜTER A. Synthetic two-dimensional polymers[J]. Annual Review of Materials Research, 2017, 47: 361-389. |
7 | WANG Song, ZHANG Ziyang, ZHANG Haomiao, et al. Reversible polycondensation-termination growth of covalent-organic-framework spheres, fibers, and films[J]. Matter, 2019, 1(6): 1592-1605. |
8 | TAN Chaoliang, CAO Xiehong, WU Xuejun, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. |
9 | BEGLEY M R, GIANOLA D S, RAY T R. Bridging functional nanocomposites to robust macroscale devices[J]. Science, 2019, 364(6447): 4299. |
10 | TORRISI Felice, COLEMAN Jonathan N. Electrifying inks with 2D materials[J]. Nature Nanotechnology, 2014, 9(10): 738-739. |
11 | TORRISI F, HASAN T, WU Weiping, et al. Inkjet-printed graphene electronics[J]. ACS Nano, 2012, 6(4): 2992-3006. |
12 | CHILLÀ F, SCHUMACHER J. New perspectives in turbulent Rayleigh-Bénard convection[J]. The European Physical Journal E, 2012, 35(7): 58. |
13 | CHIOLERIO Alessandro, PORRO Samuele, BOCCHINI Sergio. Impedance hyperbolicity in inkjet-printed graphene nanocomposites: Tunable capacitors for advanced devices[J]. Advanced Electronic Materials, 2016, 2(3): 1500312. |
14 | MANISH Chhowalla, LIU Zhongfan, ZHANG Hua. Two-dimensional transition metal dichalcogenide (TMD) nanosheets[J]. Chemical Society Reviews, 2015, 44(9): 2584-2586. |
15 | SONG Donghoon, MAHAJAN Ankit, SECOR Ethan B, et al. High-resolution transfer printing of graphene lines for fully printed, flexible electronics[J]. ACS Nano, 2017, 11(7): 7431-7439. |
16 | DANDAN SATIA Mohd Saidina, MALAYSIA Universiti Sains Malaysia, MUSTAPHA Mariatti, et al. Graphene-based inks for flexible electronics: Effect of surfactant and various types of solvents[J]. Journal of Physical Science, 2019, 30(Supp.2): 167-178. |
17 | VOIGT Monika M, GUITE Alexander, CHUNG Dae-Young, et al. Polymer field-effect transistors fabricated by the sequential gravure printing of polythiophene, two insulator layers, and a metal ink gate[J]. Advanced Functional Materials, 2010, 20(2): 239-246. |
18 | ILLARIONOV Yury Yu, KNOBLOCH Theresia, JECH Markus, et al. Insulators for 2D nanoelectronics: The gap to bridge[J]. Nature Communications, 2020, 11: 3385. |
19 | PAN Kewen, FAN Yangyang, LENG Ting, et al. Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications[J]. Nature Communications, 2018, 9: 5197. |
20 | Jianzhen OU, CHRIMES Adam F, WANG Yichao, et al. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems[J]. Nano Letters, 2014, 14(2): 857-863. |
21 | YAN Ke, LI Jiean, PAN Lijia, et al. Inkjet printing for flexible and wearable electronics[J]. APL Materials, 2020, 8: 120705. |
22 | LE Linh T, ERVIN Matthew H, QIU Hongwei, et al. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide[J]. Electrochemistry Communications, 2011, 13(4): 355-358. |
23 | LARSON Ronald G. Re-shaping the coffee ring[J]. Angewandte Chemie International Edition, 2012, 51(11): 2546-2548. |
24 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
25 | 何大方, 吴健, 刘战剑, 等. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888-2894. |
HE Dafang, WU Jian, LIU Zhanjian, et al. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8): 2888-2894. | |
26 | 刘欣, 张雅欣, 陈滢, 等. 石墨烯和氧化石墨烯制备技术与应用研究进展[J]. 陶瓷学报, 2023, 44(2): 217-235. |
LIU Xin, ZHANG Yaxin, CHEN Ying, et al. Progress in preparation and application of graphene and graphene oxide[J]. Journal of Ceramics, 2023, 44(2): 217-235. | |
27 | 15 years of graphene electronics[J]. Nature Electronics, 2019, 2: 369. |
28 | 李景涛, 马洋, 李绍先, 等. 二维过渡金属硫族化合物缺陷工程[J]. 无机化学学报, 2022, 38(6): 993-1015. |
LI Jingtao, MA Yang, LI Shaoxian, et al. Defect engineering of two-dimensional transition metal dichalcogenides[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(6): 993-1015. | |
29 | 王根旺, 侯超剑, 龙昊天, 等. 二维半导体材料纳米电子器件和光电器件[J]. 物理化学学报, 2019, 35(12): 1319-1340. |
WANG Genwang, HOU Chaojian, LONG Haotian, et al. Electronic and optoelectronic nanodevices based on two-dimensional semiconductor materials[J]. Acta Physico-Chimica Sinica, 2019, 35(12): 1319-1340. | |
30 | BILGIN Ismail, LIU Fangze, VARGAS Anthony, et al. Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality[J]. ACS Nano, 2015, 9(9): 8822-8832. |
31 | 孙健, 李静, 朱星源, 等. 片状纳米二硫化钼的制备、表征及电化学性能[J]. 河南科学, 2022, 40(12): 1934-1940. |
SUN Jian, LI Jing, ZHU Xingyuan, et al. Preparation, characterization and electrochemical properties of flaky nano-molybdenum disulfide[J]. Henan Science, 2022, 40(12): 1934-1940. | |
32 | ZHOU Yicong, XU Lanshu, LIU Minsu, et al. Viscous solvent-assisted planetary ball milling for the scalable production of large ultrathin two-dimensional materials[J]. ACS Nano, 2022, 16(7): 10179-10187. |
33 | KANG Yimin, Najmaei Sina, LIU Zheng, et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer[J]. Advanced Materials, 2014, 26(37): 6467-6471. |
34 | LI Likai, YU Yijun, YE Guo jun, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. |
35 | Andres CASTELLANOS-GOMEZ, VICARELLI Leonardo, PRADA Elsa, et al. Isolation and characterization of few-layer black phosphorus[J]. 2D Materials, 2014, 1(2): 025001. |
36 | 张闯, 程卓林, 王诗航, 等. 微纳掺杂对环氧/氮化硼复合绝缘热导率和击穿特性的影响[J]. 绝缘材料, 2021, 54(6): 38-43. |
ZHANG Chuang, CHENG Zhuolin, WANG Shihang, et al. Effect of micro/nano co-doping on thermal conductivity and breakdown characteristics of epoxy/boron nitride composite insulation[J]. Insulating Materials, 2021, 54(6): 38-43. | |
37 | LUO Miaomiao, FAN Taojian, ZHOU Yun, et al. 2D black phosphorus-based biomedical applications[J]. Advanced Functional Materials, 2019, 29(13): 1808306. |
38 | 张素卿, 苏倩, 于欢, 等. 超细SiC颗粒对球磨制备纳米晶AZ91镁合金组织及性能的影响[J]. 粉末冶金技术, 2021, 39(6): 512-519. |
ZHANG Suqing, SU Qian, YU Huan, et al. Effect of ultrafine SiC particles on microstructure and property of milled nanocrystalline AZ91 magnesium alloys[J]. Powder Metallurgy Technology, 2021, 39(6): 512-519. | |
39 | VORNDRAN E, KLARNER M, KLAMMERT U, et al. 3D powder printing of β-tricalcium phosphate ceramics using different strategies[J]. Advanced Engineering Materials, 2008, 10(12): B67-B71. |
40 | Deepika, LI Lu hua, GLUSHENKOV Alexey M, et al. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil[J]. Scientific Reports, 2014, 4: 7288. |
41 | YANG Xiao, LI Xiaoming, KONG Qingqiang, et al. One-pot ball-milling preparation of graphene/carbon black aqueous inks for highly conductive and flexible printed electronics[J]. Science China Materials, 2020, 63(3): 392-402. |
42 | LEE Dongju, LEE Bin, PARK Kwang Hyun, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling[J]. Nano Letters, 2015, 15(2): 1238-1244. |
43 | JI Hongmei, HU Song, JIANG Zeyuan, et al. Directly scalable preparation of sandwiched MoS2/graphene nanocomposites via ball-milling with excellent electrochemical energy storage performance[J]. Electrochimica Acta, 2019, 299: 143-151. |
44 | YAO Yagang, LIN Ziyin, LI Zhuo, et al. Large-scale production of two-dimensional nanosheets[J]. Journal of Materials Chemistry, 2012, 22(27): 13494-13499. |
45 | ZHANG Zhuchan, SUN Jiaojiao, LAI Can, et al. High-yield ball-milling synthesis of extremely concentrated and highly conductive graphene nanoplatelet inks for rapid surface coating of diverse substrates[J]. Carbon, 2017, 120: 411-418. |
46 | HERNANDEZ Yenny, NICOLOSI Valeria, LOTYA Mustafa, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. |
47 | NICOLOSI V, CHHOWALLA M, KANATZIDIS M, et al. Liquid exfoliation of layered materials[J]. Science, 2013, 340(6139): 1226419. |
48 | COLEMAN Jonathan N, MUSTAFA Lotya, O'Neill ARLENE, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. |
49 | JAWAID Ali, NEPAL Dhriti, PARK Kyoungweon, et al. Mechanism for liquid phase exfoliation of MoS2 [J]. Chemistry of Materials, 2016, 28(1): 337-348. |
50 | O’NEILL A, KHAN U, COLEMAN J. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size[J]. Chemistry of Materials, 2012, 24: 2414-2421. |
51 | YI Min, SHEN Zhigang, ZHANG Xiaojing, et al. Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters[J]. Journal of Physics D: Applied Physics, 2013, 46(2): 025301. |
52 | HUO Chengxue, YAN Zhong, SONG Xiufeng, et al. 2D materials via liquid exfoliation: A review on fabrication and applications[J]. Science Bulletin, 2015, 60(23): 1994-2008. |
53 | ZHOU Kaige, MAO Nannan, WANG Hangxing, et al. A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues[J]. Angewandte Chemie International Edition, 2011, 50(46): 10839-10842. |
54 | 翟倩楠, 冯树波. 氧化石墨烯的制备、结构控制与应用[J]. 化工进展, 2020, 39(10): 4061-4072. |
ZHAI Qiannan, FENG Shubo. Preparation, structure control and application of graphene oxide[J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4061-4072. | |
55 | BECERRIL Héctor A, MAO Jie, LIU Zunfeng, et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors[J]. ACS Nano, 2008, 2(3): 463-470. |
56 | JIAO Liying, ZHANG Li, WANG Xinran, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458(7240): 877-880. |
57 | HAAR Sébastien, GEMAYEL Mirella EL, SHIN Yuyoung, et al. Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-octylbenzene[J]. Scientific Reports, 2015, 5: 16684. |
58 | QIU Xiaoyu, BOUCHIAT Vincent, COLOMBET Damien, et al. Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating ‘lab-on-a-chip’[J]. RSC Advances, 2019, 9(6): 3232-3238. |
59 | VADUKUMPULLY Sajini, PAUL Jinu, VALIYAVEETTIL Suresh. Cationic surfactant mediated exfoliation of graphite into graphene flakes[J]. Carbon, 2009, 47(14): 3288-3294. |
60 | Haar SÉBASTIEN, CIESIELSKI A, CLOUGH J, et al. A supramolecular strategy to leverage the liquid‐phase exfoliation of graphene in the presence of surfactants: Unraveling the role of the length of fatty acids[J]. Small, 2015, 11: 1691-1702. |
61 | SHEN Jianfeng, HE Yongmin, WU Jingjie, et al. Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components[J]. Nano Letters, 2015, 15(8): 5449-5454. |
62 | MA Han, SHEN Zhigang, Shuang BEN. Surfactant-free exfoliation of multilayer molybdenum disulfide nanosheets in water[J]. Journal of Colloid and Interface Science, 2019, 537: 28-33. |
63 | GUAN Guijian, ZHANG Shuangyuan, LIU Shuhua, et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides[J]. Journal of the American Chemical Society, 2015, 137(19): 6152-6155. |
64 | REN Xiaohui, ZHOU Jie, QI Xiang, et al. Few-layer black phosphorus nanosheets as electrocatalysts for highly efficient oxygen evolution reaction[J]. Advanced Energy Materials, 2017, 7(19): 1700396. |
65 | BRENT Jack R, SAVJANI Nicky, LEWIS Edward A, et al. Production of few-layer phosphorene by liquid exfoliation of black phosphorus[J]. Chemical Communications, 2014, 50(87): 13338-13341. |
66 | WANG Huaiyu, YU Xuefeng. Few-layered black phosphorus: From fabrication and customization to biomedical applications[J]. Small, 2018, 14(6): 1702830. |
67 | HANLON Damien, BACKES Claudia, DOHERTY Evie, et al. Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics[J]. Nature Communications, 2015, 6: 8563. |
68 | JOOHOON Kang, WOOD Joshua D, WELLS Spencer A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano, 2015, 9(4): 3596-3604. |
69 | GUO Zhinan, ZHANG Han, LU Shunbin, et al. From black phosphorus to phosphorene: Basic solvent exfoliation, evolution of Raman scattering, and applications to ultrafast photonics[J]. Advanced Functional Materials, 2015, 25(45): 6996-7002. |
70 | XU Jingyin, GAO Linfeng, HU Chenxia, et al. Preparation of large size, few-layer black phosphorus nanosheets via phytic acid-assisted liquid exfoliation[J]. Chemical Communications, 2016, 52(52): 8107-8110. |
71 | LEI Weiwei, MOCHALIN Vadym N, LIU Dan, et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization[J]. Nature Communications, 2015, 6: 8849. |
72 | MARSH K L, SOULIMAN M, KANER R B. Co-solvent exfoliation and suspension of hexagonal boron nitride[J]. Chemical Communications, 2015, 51(1): 187-190. |
73 | YE Huijian, LU Tiemei, XU Chunfeng, et al. Liquid-phase exfoliation of hexagonal boron nitride into boron nitride nanosheets in common organic solvents with hyperbranched polyethylene as stabilizer[J]. Macromolecular Chemistry and Physics, 2018, 219(6): 1700482. |
74 | LI Jiantong, LEMME Max C, Mikael ÖSTLING. Inkjet printing of 2D layered materials[J]. ChemPhysChem, 2014, 15(16): 3427-3434. |
75 | 林坚普, 张胜杰, 曹项红, 等. 基于体积方差法控制多喷嘴喷射墨滴均匀性[J]. 光学学报, 2023, 43(10): 293-300. |
LIN Jianpu, ZHANG Shengjie, CAO Xianghong, et al. Control of multi-nozzle inkjet droplet uniformity based on volume variance[J]. Acta Optica Sinica, 2023, 43(10): 293-300. | |
76 | ANTONOVA I V. 2D printing technologies using graphene-based materials[J]. Physics-Uspekhi, 2017, 60(2): 204-218. |
77 | LIU Pingwei, COTTRILL Anton L, KOZAWA Daichi, et al. Emerging trends in 2D nanotechnology that are redefining our understanding of “Nanocomposites”[J]. Nano Today, 2018, 21: 18-40. |
78 | WENG B, SHEPHERD R L, CROWLEY K, et al. Printing conducting polymers[J]. Analyst, 2010, 135(11): 2779-2789. |
79 | DAN Soltman, VIVEK Subramanian. Inkjet-printed line morphologies and temperature control of the coffee ring effect[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2008, 24(5): 2224-2231. |
80 | PERELAER Jolke, SMITH Patrick J, VAN DEN BOSCH Erwin, et al. The spreading of inkjet-printed droplets with varying polymer molar mass on a dry solid substrate[J]. Macromolecular Chemistry and Physics, 2009, 210(6): 495-502. |
81 | DUINEVELD P C. The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate[J]. Journal of Fluid Mechanics, 2003, 477: 175-200. |
82 | SUN Lei, YANG Kaiyu, LIN Zhixian, et al. Effects of coffee ring via inkjet printing seed layers on field emission properties of patterned ZnO nanorods[J]. Ceramics International, 2018, 44(9): 10735-10743. |
83 | DEEGAN Robert D, BAKAJIN Olgica, DUPONT Todd F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653): 827-829. |
84 | DEEGAN Robert D. Pattern formation in drying drops[J]. Physical Review E, 2000, 61(1): 475-485. |
85 | DEEGAN R D, BAKAJIN O, DUPONT T F, et al. Contact line deposits in an evaporating drop[J]. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 2000, 62(1 Pt B): 756-765. |
86 | HU Hua, LARSON Ronald G. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2005, 21(9): 3972-3980. |
87 | HU Hua, LARSON Ronald G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir, 2005, 21(9): 3963-3971. |
88 | HU Hua, LARSON Ronald G. Marangoni effect reverses coffee-ring depositions[J]. The Journal of Physical Chemistry B, 2006, 110(14): 7090-7094. |
89 | PILLAI Dipin S, NARAYANAN R. Rayleigh-Taylor stability in an evaporating binary mixture[J]. Journal of Fluid Mechanics, 2018, 848: R1. |
90 | YUNKER Peter J, STILL Tim, LOHR Matthew A, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature, 2011, 476(7360): 308-311. |
91 | HE Pei, DERBY Brian. Controlling coffee ring formation during drying of inkjet printed 2D inks[J]. Advanced Materials Interfaces, 2017, 4(22): 1700944. |
92 | J A LIM, LEE W H, LEE H S, et al. Self-organization of ink-jet-printed triisopropylsilylethynyl pentacene via evaporation-induced flows in a drying droplet[J]. Advanced Functional Materials, 2008, 18(2): 229-234. |
93 | 王德明, 陈爱强, 王胜威, 等. 曲面上纳米流体液滴的蒸发特性[J]. 包装工程, 2023, 44(5): 57-64. |
WANG Deming, CHEN Aiqiang, WANG Shengwei, et al. Evaporation characteristics of nanofluid droplets on curved surface[J]. Packaging Engineering, 2023, 44(5): 57-64. | |
94 | LI Yanan, YANG Qiang, LI Mingzhu, et al. Rate-dependent interface capture beyond the coffee-ring effect[J]. Scientific Reports, 2016, 6: 24628. |
95 | LAMA Hisay, BASAVARAJ Madivala G, SATAPATHY Dillip K. Tailoring crack morphology in coffee-ring deposits via substrate heating[J]. Soft Matter, 2017, 13(32): 5445-5452. |
96 | MAMPALLIL Dileep, ERAL Huseyin Burak. A review on suppression and utilization of the coffee-ring effect[J]. Advances in Colloid and Interface Science, 2018, 252: 38-54. |
97 | CUI Liying, LI Yingfeng, WANG Jingxia, et al. Fabrication of large-area patterned photonic crystals by ink-jet printing[J]. Journal of Materials Chemistry, 2009, 19(31): 5499-5502. |
98 | Shyamashis DAS, Atreya DEY, REDDY Govardhan, et al. Suppression of the coffee-ring effect and evaporation-driven disorder to order transition in colloidal droplets[J]. The Journal of Physical Chemistry Letters, 2017, 8(19): 4704-4709. |
99 | KANG Seok Hee, SHIN Yong Cheol, HWANG Eun Young, et al. Engineered “coffee-rings”of reduced graphene oxide as ultrathin contact guidance to enable patterning of living cells[J]. Materials Horizons, 2019, 6(5): 1066-1079. |
100 | KUANG Minxuan, WANG Libin, SONG Yanlin. Controllable printing droplets for high-resolution patterns[J]. Advanced Materials, 2014, 26(40): 6950-6958. |
101 | MORALES Verónica L, PARLANGE Jean-Yves, WU Mingming, et al. Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets[J]. Langmuir, 2013, 29(6): 1831-1840. |
102 | MAYARANI Muraleedharapai, BASAVARAJ Madivala G, SATAPATHY Dillip K. Viscoelastic particle-laden interface inhibits coffee-ring formation[J]. Langmuir, 2018, 34(47): 14294-14301. |
103 | ANYFANTAKIS Manos, BAIGL Damien. Dynamic photocontrol of the coffee-ring effect with optically tunable particle stickiness[J]. Angewandte Chemie International Edition, 2014, 53(51): 14077-14081. |
104 | MCMANUS Daryl, VRANIC Sandra, WITHERS Freddie, et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures[J]. Nature Nanotechnology, 2017, 12(4): 343-350. |
105 | 姜欣, 赵轩亮, 李晶, 等. 石墨烯导电墨水研究进展: 制备方法、印刷技术及应用[J]. 科学通报, 2017, 62(27): 3217-3235. |
JIANG Xin, ZHAO Xuanliang, LI Jing, et al. Recent developments in graphene conductive ink: Preparation, printing technology and application[J]. Chinese Science Bulletin, 2017, 62(27): 3217-3235. | |
106 | MACHA Michal, MARION Sanjin, NANDIGANA Vishal V R, et al. 2D materials as an emerging platform for nanopore-based power generation[J]. Nature Reviews Materials, 2019, 4(9): 588-605. |
107 | FIORI Gianluca, BONACCORSO Francesco, IANNACCONE Giuseppe, et al. Electronics based on two-dimensional materials[J]. Nature Nanotechnology, 2014, 9(10): 768-779. |
108 | MODENA M, RÜHLE B, BURG T, et al. Nanoparticle characterization: What to measure? [J]. Adv Mater, 2019, 31(32): e1901556. |
109 | STOJANOVIĆ, PAROŠKI, SAMARDŽIĆ, et al. Microfluidics-based four fundamental electronic circuit elements resistor, inductor, capacitor and memristor[J]. Electronics, 2019, 8(9): 960. |
110 | WITHERS F, YANG H, BRITNELL L, et al. Heterostructures produced from nanosheet-based inks[J]. Nano Letters, 2014, 14(7): 3987-3992. |
111 | NEUMAIER Daniel, PINDL Stephan, LEMME Max C. Integrating graphene into semiconductor fabrication lines[J]. Nature Materials, 2019, 18(6): 525-529. |
112 | KAWASE T, SIRRINGHAUS H, FRIEND R H, et al. Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits[J]. Advanced Materials, 2001, 13(21): 1601-1605. |
113 | WORSLEY Robyn, PIMPOLARI Lorenzo, MCMANUS Daryl, et al. All-2D material inkjet-printed capacitors: Toward fully printed integrated circuits[J]. ACS Nano, 2019, 13(1): 54-60. |
114 | PORRO S, RICCIARDI C. Memristive behaviour in inkjet printed graphene oxide thin layers[J]. RSC Advances, 2015, 5(84): 68565-68570. |
115 | BESSONOV Alexander A, KIRIKOVA Marina N, PETUKHOV Dmitrii I, et al. Layered memristive and memcapacitive switches for printable electronics[J]. Nature Materials, 2015, 14(2): 199-204. |
116 | LIU Han, NEAL Adam T, ZHU Zhen, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano, 2014, 8(4): 4033-4041. |
117 | TAN Wee Chong, WANG Lin, FENG Xuewei, et al. Recent advances in black phosphorus-based electronic devices[J]. Advanced Electronic Materials, 2019, 5(2): 1800666. |
118 | KARIM Nazmul, AFROJ Shaila, TAN Sirui, et al. All inkjet-printed graphene-silver composite ink on textiles for highly conductive wearable electronics applications[J]. Scientific Reports, 2019, 9: 8035. |
119 | SENTHIL KUMAR Kirthika, CHEN Po-Yen, REN Hongliang. A review of printable flexible and stretchable tactile sensors[J]. Research, 2019, 2019: 3018568. |
120 | FINN David J, LOTYA Mustafa, CUNNINGHAM Graeme, et al. Inkjet deposition of liquid-exfoliated graphene and MoS2 nanosheets for printed device applications[J]. Journal of Materials Chemistry C, 2014, 2(5): 925-932. |
121 | KIM Tae-Young, Jewook HA, CHO Kyungjune, et al. Transparent large-area MoS2 phototransistors with inkjet-printed components on flexible platforms[J]. ACS Nano, 2017, 11(10): 10273-10280. |
122 | MA Siyuan, RIBEIRO Flavio, POWELL Karlton, et al. Fabrication of novel transparent touch sensing device via drop-on-demand inkjet printing technique[J]. ACS Applied Materials & Interfaces, 2015, 7(39): 21628-21633. |
123 | Kourosh KALANTAR-ZADEH, Jian zhen OU. Biosensors based on two-dimensional MoS2 [J]. ACS Sensors, 2016, 1(1): 5-16. |
124 | HU Guohua, Tom ALBROW-OWEN, JIN Xinxin, et al. Black phosphorus ink formulation for inkjet printing of optoelectronics and photonics[J]. Nature Communications, 2017, 8: 278. |
125 | LIU Aimei, LV Hao, LIU Hui, et al. Two dimensional MoS2/CNT hybrid ink for paper-based capacitive energy storage[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(12): 8452-8459. |
126 | ZHANG Chuanfang John), MCKEON Lorcan, KREMER Matthias P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 2019, 10: 1795. |
127 | KOMAN Volodymyr B, LIU Pingwei, KOZAWA Daichi, et al. Colloidal nanoelectronic state machines based on 2D materials for aerosolizable electronics[J]. Nature Nanotechnology, 2018, 13(9): 819-827. |
128 | LIU Pingwei, LIU Albert Tianxiang, KOZAWA Daichi, et al. Autoperforation of 2D materials for generating two-terminal memristive Janus particles[J]. Nature Materials, 2018, 17(11): 1005-1012. |
129 | SECOR Ethan B, HERSAM Mark C. Emerging carbon and post-carbon nanomaterial inks for printed electronics[J]. The Journal of Physical Chemistry Letters, 2015, 6(4): 620-626. |
130 | HU Guohua, KANG Joohoon, Leonard W T NG, et al. Functional inks and printing of two-dimensional materials[J]. Chemical Society Reviews, 2018, 47(9): 3265-3300. |
131 | YAKOVLEV Aleksandr V, MILICHKO Valentin A, VINOGRADOV Vladimir V, et al. Inkjet color printing by interference nanostructures[J]. ACS Nano, 2016, 10(3): 3078-3086. |
132 | HAN Sang A, LEE Ju-Hyuck, SEUNG Wanchul, et al. Patchable and implantable 2D nanogenerator[J]. Small, 2021, 17(9): 1903519. |
133 | JAKUS Adam E, SECOR Ethan B, RUTZ Alexandra L, et al. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications[J]. ACS Nano, 2015, 9(4): 4636-4648. |
[1] | YANG Xue, LIU Ke, ZHANG Chengxiang, LI Donglin, WANG Jiangqin, YANG Wanliang. Research progress of 2D layered materials for fuel oil oxidation desulfurization [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 422-436. |
[2] | LI Wenpeng, LIU Qing, YANG Zhirong, GAO Zhanpeng, WANG Jingtao, ZHOU Mingliang, ZHANG Jinli. Advances in efficient preparation of graphene by liquid-phase exfoliation [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 215-231. |
[3] | LI Ya’nan, NIAN Pei, XU Nan, LUO Haiyu, WEI Yibin. Research progress of MXene-based membrane materials for precision fluid separation [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5249-5258. |
[4] | LI Peishan, ZHANG Mengchen, LI Mingjie, ZHENG Wenbiao, LIU Minchao, XIE Gaoyi, XU Xiaolong, LIU Changyu, JIA Jianbo. Nanofluidic channels based on two-dimensional material membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3745-3757. |
[5] | ZHAO Guoke, PAN Guoyuan, ZHANG Yang, YU Hao, ZHAO Muhua, TANG Gongqing, LIU Yiqun. Recent advances in graphene-based membranes for CO2 separation [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5896-5911. |
[6] | WANG Siheng, YANG Xinxin, LIU He, SHANG Shibin, SONG Zhanqian. Research progress in preparation and application of conductive hydrogels [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2646-2664. |
[7] | ZHANG Chuang, WANG Cheng, WANG Yun, JIA Zhiyong, SHI Kunming, JIANG Guozhang, CHENG Yunxing. High performance Pt electrocatalyst based on 1D-2D mixed materials [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 573-580. |
[8] | YIN Huibin,GAO Xuenong,DING Jing,ZHANG Zhengguo. Advances in application of thermal adaptation composite materials in electronic device cooling [J]. Chemical Industry and Engineering Progree, 2007, 26(6): 830-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |