Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (6): 3128-3144.DOI: 10.16085/j.issn.1000-6613.2023-0815
• Materials science and technology • Previous Articles
XIE Mengmeng1,2(), LIU Jian1(), DANG Rui2(), LI Meixin1,2, LIN Xiaoting1, SU Zhou1, WANG Jie1
Received:
2023-05-15
Revised:
2023-08-18
Online:
2024-07-02
Published:
2024-06-15
Contact:
LIU Jian, DANG Rui
谢蒙蒙1,2(), 刘健1(), 党蕊2(), 李美馨1,2, 林晓婷1, 苏舟1, 王洁1
通讯作者:
刘健,党蕊
作者简介:
谢蒙蒙(1997—),女,硕士研究生,研究方向为导电水凝胶及柔性可穿戴电子。E-mail:xiemeng1216@163.com。
基金资助:
CLC Number:
XIE Mengmeng, LIU Jian, DANG Rui, LI Meixin, LIN Xiaoting, SU Zhou, WANG Jie. Preparation of ionic conductive hydrogels and its applications in flexible electronic[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3128-3144.
谢蒙蒙, 刘健, 党蕊, 李美馨, 林晓婷, 苏舟, 王洁. 离子导电水凝胶的制备及在柔性电子领域的应用[J]. 化工进展, 2024, 43(6): 3128-3144.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0815
水凝胶 | 导电介质 | 电导率/S·m-1 | 灵敏度(GF) | 断裂伸长率/% | 拉伸应力/kPa | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
P(AA-AM)-Fe3+/CS-SO42- | Fe3+; SO42- | 3.04 | 6 | 1225 | 5100 | 传感器 | [ |
PAM/卡拉胶/KCl | KCl | — | 0.63 | 2000 | 550 | 传感器 | [ |
DA-Fe-PAA | Fe3+ | 30 | — | >2000 | 13 | 传感器 | [ |
P(SBMA-HEMA)/XLG | XLG;SBMA | 0.24 | 1.8 | 2000 | 270 | 传感器 | [ |
PVA/PVP/CNCs-Fe3+ | Fe3+ | — | 0.478 | 830 | 2100 | 传感器 | [ |
GMA-SA-PAM | NaCl | 5.26 | — | 407 | 21.63 | 传感器 | [ |
PAM-CMC/Ca2+ | Ca2+ | 1.4 | 1.42 | 1480 | 276 | 传感器 | [ |
PAM/SC/CMS-Na | Na+ | 6.12 | — | 3300 | 320 | 传感器 | [ |
PAM-SA/CaCl2 | CaCl2 | 8 | — | 400 | — | 超级电容器 | [ |
PAM/干酪素/LiCl | LiCl | 7.53 | — | 1465 | 168 | 传感器 | [ |
PVA-NaCl-甘油 | NaCl | 9.25 | — | 575±29 | 570±20 | 超级电容器 | [ |
PVA-SA-TA-Bx | Bx; Na+ | 2.69 | 15.98 | 600 | 23 | 传感器 | [ |
PAM-CS/NaCl | NaCl | 17 | 2 | 1350 | 200 | 传感器伤口敷料 | [ |
PAA-TA@CNC-Al3+ | AlCl3 | — | 7.8 | 2800 | 300 | 传感器 | [ |
AC/NaOH-尿素 | NaOH | 0.016 | 0.3 | 126 | 50 | 传感器 | [ |
PAM-CMC/LiCl | LiCl | — | 3.15 | 1363 | 22.8 | 传感器 | [ |
PAM-铁蛋白 | 铁蛋白 | 0.067 | 2.06 | 1400 | 99 | 传感器 | [ |
PAA-AAPBA/TA | CaCl2 | — | 0.79 | 7300 | 54 | 传感器 | [ |
PNA/PVP/TA/Fe3+ | Fe3+ | 0.79 | 3.61 | 720 | — | 传感器 | [ |
P(AA-AM)/SA/ZnSO4 | ZnSO4 | — | 2.9 | 4200 | 210 | 传感器 | [ |
SA/ZnSO4/P(AM-AA) | ZnSO4 | 0.34 | — | >10000 | 150 | 摩擦纳米发电机 | [ |
水凝胶 | 导电介质 | 电导率/S·m-1 | 灵敏度(GF) | 断裂伸长率/% | 拉伸应力/kPa | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
P(AA-AM)-Fe3+/CS-SO42- | Fe3+; SO42- | 3.04 | 6 | 1225 | 5100 | 传感器 | [ |
PAM/卡拉胶/KCl | KCl | — | 0.63 | 2000 | 550 | 传感器 | [ |
DA-Fe-PAA | Fe3+ | 30 | — | >2000 | 13 | 传感器 | [ |
P(SBMA-HEMA)/XLG | XLG;SBMA | 0.24 | 1.8 | 2000 | 270 | 传感器 | [ |
PVA/PVP/CNCs-Fe3+ | Fe3+ | — | 0.478 | 830 | 2100 | 传感器 | [ |
GMA-SA-PAM | NaCl | 5.26 | — | 407 | 21.63 | 传感器 | [ |
PAM-CMC/Ca2+ | Ca2+ | 1.4 | 1.42 | 1480 | 276 | 传感器 | [ |
PAM/SC/CMS-Na | Na+ | 6.12 | — | 3300 | 320 | 传感器 | [ |
PAM-SA/CaCl2 | CaCl2 | 8 | — | 400 | — | 超级电容器 | [ |
PAM/干酪素/LiCl | LiCl | 7.53 | — | 1465 | 168 | 传感器 | [ |
PVA-NaCl-甘油 | NaCl | 9.25 | — | 575±29 | 570±20 | 超级电容器 | [ |
PVA-SA-TA-Bx | Bx; Na+ | 2.69 | 15.98 | 600 | 23 | 传感器 | [ |
PAM-CS/NaCl | NaCl | 17 | 2 | 1350 | 200 | 传感器伤口敷料 | [ |
PAA-TA@CNC-Al3+ | AlCl3 | — | 7.8 | 2800 | 300 | 传感器 | [ |
AC/NaOH-尿素 | NaOH | 0.016 | 0.3 | 126 | 50 | 传感器 | [ |
PAM-CMC/LiCl | LiCl | — | 3.15 | 1363 | 22.8 | 传感器 | [ |
PAM-铁蛋白 | 铁蛋白 | 0.067 | 2.06 | 1400 | 99 | 传感器 | [ |
PAA-AAPBA/TA | CaCl2 | — | 0.79 | 7300 | 54 | 传感器 | [ |
PNA/PVP/TA/Fe3+ | Fe3+ | 0.79 | 3.61 | 720 | — | 传感器 | [ |
P(AA-AM)/SA/ZnSO4 | ZnSO4 | — | 2.9 | 4200 | 210 | 传感器 | [ |
SA/ZnSO4/P(AM-AA) | ZnSO4 | 0.34 | — | >10000 | 150 | 摩擦纳米发电机 | [ |
1 | CHEN Tao, CHEN Yujie, REHMAN Ur Hafeez, et al. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33523-33531. |
2 | CHEN Yang, LIU Tao, WANG Guoyin, et al. Highly swelling, tough intelligent self-healing hydrogel with body temperature-response[J]. European Polymer Journal, 2020, 140: 110047. |
3 | PENG Xin, XIA Xianfeng, XU Xiayi, et al. Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations[J]. Science Advances, 2021, 7(23): eabe8739. |
4 | ZHENG Chunxiao, YUE Yiying, GAN Lu, et al. Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels[J]. Nanomaterials, 2019, 9(7): 937. |
5 | YU Xiaohui, ZHENG Yong, ZHANG Haopeng, et al. Fast-recoverable, self-healable, and adhesive nanocomposite hydrogel consisting of hybrid nanoparticles for ultrasensitive strain and pressure sensing[J]. Chemistry of Materials, 2021, 33(15): 6146-6157. |
6 | CUI Jianbing, CHEN Jiwei, NI Zhongbin, et al. High-sensitivity flexible sensor based on biomimetic strain-stiffening hydrogel[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 47148-47156. |
7 | HE Bin, ZHOU Yanmin, WANG Zhipeng, et al. A multi-layered touch-pressure sensing ionogel material suitable for sensing integrated actuations of soft robots[J]. Sensors and Actuators A: Physical, 2018, 272: 341-348. |
8 | YANG Canhui, SUO Zhigang. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142. |
9 | LIU Ziyang, WANG Yue, REN Yongyuan, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7(3): 919-927. |
10 | YING Binbin, CHEN Ryan Zeyuan, ZUO Runze, et al. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics[J]. Advanced Functional Materials, 2021, 31(42): 2104665. |
11 | KIRIYA Daisuke, CHEN Kevin, Hiroki OTA, et al. Design of surfactant-substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors[J]. Journal of the American Chemical Society, 2014, 136(31): 11188-11194. |
12 | YEOM Chiseon, CHEN Kevin, KIRIYA Daisuke, et al. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes[J]. Advanced Materials, 2015, 27(9): 1561-1566. |
13 | TAKEI Kuniharu, YU Zhibin, ZHENG Maxwell, et al. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 1703-1707. |
14 | GAO Yuji, Hiroki OTA, SCHALER Ethan W, et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring[J]. Advanced Materials, 2017, 29(39): 1701985. |
15 | GUO Jing, WU Shanshan, WANG Yilei, et al. A salt-triggered multifunctional smart window derived from a dynamic polyampholyte hydrogel[J]. Materials Horizons, 2022, 9(12): 3039-3047. |
16 | RONG Qinfeng, LEI Wenwei, CHEN Lie, et al. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures[J]. Angewandte Chemie International Edition, 2017, 56(45): 14159-14163. |
17 | CHEN Jingsi, PENG Qiongyao, THUNDAT Thomas, et al. Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics[J]. Chemistry of Materials, 2019, 31(12): 4553-4563. |
18 | WANG Zhiwen, ZHOU Hongwei, LAI Jialiang, et al. Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors[J]. Journal of Materials Chemistry C, 2018, 6(34): 9200-9207. |
19 | LI Qianming, LIU Hu, ZHANG Shuaidi, et al. Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21904-21914. |
20 | XIA Shan, SONG Shixin, JIA Fei, et al. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring[J]. Journal of Materials Chemistry B, 2019, 7(30): 4638-4648. |
21 | SHAO Hui, WU Yih Chyng, LIN Zifeng, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews, 2020, 49(10): 3005-3039. |
22 | LIN Fengcai, WANG Zi, SHEN Yanping, et al. Natural skin-inspired versatile cellulose biomimetic hydrogels[J]. Journal of Materials Chemistry A, 2019, 7(46): 26442-26455. |
23 | LEE Hae-Ryung, KIM Chong-Chan, SUN Jeong-Yun. Stretchable ionics—A promising candidate for upcoming wearable devices[J]. Advanced Materials, 2018, 30(42): 1704403. |
24 | WU Jin, HAN Songjia, YANG Tengzhou, et al. Highly stretchable and transparent thermistor based on self-healing double network hydrogel[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 19097-19105. |
25 | LIU Hao, LI Moxiao, LIU Shaobao, et al. Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics[J]. Materials Horizons, 2020, 7(1): 203-213. |
26 | LI Jingjing, GENG Lifang, WANG Gang, et al. Self-healable gels for use in wearable devices[J]. Chemistry of Materials, 2017, 29(21): 8932-8952. |
27 | ZHANG Xiaohui, SHENG Nannan, WANG Linan, et al. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors[J]. Materials Horizons, 2019, 6(2): 326-333. |
28 | HU Lixuan, CHEE Pei Lin, SUGIARTO Sigit, et al. Hydrogel-based flexible electronics[J]. Advanced Materials, 2023, 35(14): 2205326. |
29 | LI Lingling, LI Weizheng, WANG Xiaoliang, et al. Ultra-tough and recyclable ionogels constructed by coordinated supramolecular solvents[J]. Angewandte Chemie International Edition, 2022, 61(50): e202212512. |
30 | WANG Zhenwu, CONG Yang, FU Jun. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. Journal of Materials Chemistry B, 2020, 8(16): 3437-3459. |
31 | KUMAR Vipin, PARK Sangbaek, PARIDA Kaushik, et al. Multi-responsive supercapacitors: Smart solution to store electrical energy[J]. Materials Today Energy, 2017, 4: 41-57. |
32 | DING Hongyao, LIANG Xiaoxu, WANG Qiao, et al. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor[J]. Carbohydrate Polymers, 2020, 248: 116797. |
33 | CHEN Wei, BU Yunhao, LI Delin, et al. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose[J]. Cellulose, 2020, 27(2): 853-865. |
34 | ZHENG Siyu, MAO Shihua, YUAN Jingfeng, et al. Molecularly engineered zwitterionic hydrogels with high toughness and self-healing capacity for soft electronics applications[J]. Chemistry of Materials, 2021, 33(21): 8418-8429. |
35 | HUANG Yiwan, QIAN Sanyu, ZHOU Ju, et al. Achieving swollen yet strengthened hydrogels by reorganizing multiphase network structure[J]. Advanced Functional Materials, 2023, 33(22): 2213549. |
36 | NIU Jiabao, WANG Jianquan, DAI Xiaofu, et al. Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties[J]. Carbohydrate Polymers, 2018, 193: 73-81. |
37 | LIANG Yongzhi, YE Lina, SUN Xingyue, et al. Tough and stretchable dual ionically cross-linked hydrogel with high conductivity and fast recovery property for high-performance flexible sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1577-1587. |
38 | LIU Sijun, LI Lin. Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26429-26437. |
39 | HUANG Hailong, HAN Lu, FU Xiaobin, et al. Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin[J]. Advanced Electronic Materials, 2020, 6(7): 2000239. |
40 | JIA Zhanrong, ZENG Yan, TANG Pengfei, et al. Conductive, tough, transparent, and self-healing hydrogels based on catechol-metal ion dual self-catalysis[J]. Chemistry of Materials, 2019, 31(15): 5625-5632. |
41 | ERFANI Amir, SEABERG Joshua, AICHELE Clint Philip, et al. Interactions between biomolecules and zwitterionic moieties: A review[J]. Biomacromolecules, 2020, 21(7): 2557-2573. |
42 | PENG Xu, LIU Huili, YIN Qin, et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors[J]. Nature Communications, 2016, 7: 11782. |
43 | LENG Kaitong, LI Guojie, GUO Jingjing, et al. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries[J]. Advanced Functional Materials, 2020, 30(23): 2001317. |
44 | WANG Zhenwu, CHEN Jing, WANG Liufang, et al. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels[J]. Journal of Materials Chemistry B, 2019, 7(1): 24-29. |
45 | WANG Liufang, GAO Guorong, ZHOU Yang, et al. Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 3506-3515. |
46 | 翟晓文, 武荣瑞, 姜胶东. 聚醚酯-无机盐复合物的研究[J]. 高分子材料科学与工程, 1999, 15(1): 132-135, 138. |
ZHAI Xiaowen, WU Rongrui, JIANG Jiaodong. Study on the complexes of polyether ester with inorganic salts[J]. Polymer Materials Science & Engineering, 1999, 15(1): 132-135, 138. | |
47 | 胡金龙, 全桦红, 王静成, 等. 温敏性水凝胶Pluronic F127载硫化铜纳米颗粒修复大鼠感染性创面[J]. 中国组织工程研究, 2023, 27(12): 1927-1931. |
HU Jinlong, QUAN Huahong, WANG Jingcheng, et al. Effect of copper sulfide nanoparticles loaded thermosensitive hydrogel Pluronic F127 on infected wound healing in rats[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(12): 1927-1931. | |
48 | BAEK Jinsu, KIM Seyoung, Iloh SON, et al. Hydrolysis-driven viscoelastic transition in triblock copolyether hydrogels with acetal pendants[J]. ACS Macro Letters, 2021, 10(8): 1080-1087. |
49 | ALEID Sara, WU Mengchun, LI Renyuan, et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting[J]. ACS Materials Letters, 2022, 4(3): 511-520. |
50 | LIU Yanjun, CAO Wentao, MA Mingguo, et al. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25559-25570. |
51 | QI Jiabin, WANG Aurelia Chi, YANG Weifeng, et al. Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator[J]. Nano Energy, 2020, 67: 104206. |
52 | LIU Tao, ZHANG Ripeng, LIU Jianzhi, et al. High strength and conductive hydrogel with fully interpenetrated structure from alginate and acrylamide[J]. e-Polymers, 2021, 21(1): 391-97. |
53 | BAI Jiahui, WANG Ran, WANG Xiaoming, et al. Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors[J]. Cell Reports Physical Science, 2021, 2(11): 100623. |
54 | WANG Siheng, YU Le, WANG Shanshan, et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions[J]. Nature Communications, 2022, 13: 3408. |
55 | YAO Xue, ZHANG Sufeng, QIAN Liwei, et al. Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors[J]. Advanced Functional Materials, 2022, 32(33): 2204565. |
56 | XIA Shan, SONG Shixin, GAO Guanghui. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion[J]. Chemical Engineering Journal, 2018, 354: 817-824. |
57 | JIANG Bing, LI Qingshan, HONG Wei, et al. Improvement of mechanical strength, thermal stability, swelling, moisture content of triple network hydrogels by carbon nanotubes[J]. IOP Conference Series: Materials Science & Engineering, 2019, 585: 012054. |
58 | ZHOU Linjie, PEI Xinjie, FANG Kun, et al. Super tough, ultra-stretchable, and fast recoverable double network hydrogels physically crosslinked by triple non-covalent interactions[J]. Polymer, 2020, 192: 122319. |
59 | ZHANG Haodong, SHI Ling Wa Eric, ZHOU Jinping. Recent developments of polysaccharide-based double-network hydrogels[J]. Journal of Polymer Science, 2023, 61(1): 7-43. |
60 | WANG Cong, ZHANG Ping, XIAO Wenqing, et al. Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds[J]. Nature Communications, 2020, 11: 4694. |
61 | CONG Jing, FAN Zhiwei, PAN Shaoshan, et al. Polyacrylamide/chitosan-based conductive double network hydrogels with outstanding electrical and mechanical performance at low temperatures[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34942-34953. |
62 | LIN Xinghuan, ZHANG Lina, DUAN Bo. Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness[J]. Materials Horizons, 2021, 8(9): 2503-2512. |
63 | LIANG Yujia, WANG Kaifang, LI Jingjing, et al. Low-molecular-weight supramolecular-polymer double-network eutectogels for self-adhesive and bidirectional sensors[J]. Advanced Functional Materials, 2021, 31(45): 2104963. |
64 | WANG Guangyu, ZHANG Qian, WANG Qian, et al. Bio-based hydrogel transducer for measuring human motion with stable adhesion and ultrahigh toughness[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 24173-24182. |
65 | WEI Junjie, WANG Qigang. Hofmeister effect-aided assembly of enhanced hydrogel supercapacitor with excellent interfacial contact and reliability[J]. Small Methods, 2019, 3(11): 1900558. |
66 | MORELLE Xavier P, ILLEPERUMA Widusha R, KEVIN Tian, et al. Highly stretchable and tough hydrogels below water freezing temperature[J]. Advanced Materials, 2018, 30(35): e1801541. |
67 | GUAN Lin, YAN Su, LIU Xin, et al. Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion[J]. Journal of Materials Chemistry B, 2019, 7(34): 5230-5236. |
68 | PENG Shuijiao, LIU Shuxuan, SUN Yujun, et al. Facile preparation and characterization of poly(vinyl alcohol)-NaCl-glycerol supramolecular hydrogel electrolyte[J]. European Polymer Journal, 2018, 106: 206-213. |
69 | ZHAO Li, REN Zhijun, LIU Xiong, et al. A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 11344-11355. |
70 | BAO Guangyu, HUO Ran, MA Zhenwei, et al. Ionotronic tough adhesives with intrinsic multifunctionality[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37849-37861. |
71 | SHAO Changyou, WANG Meng, MENG Lei, et al. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties[J]. Chemistry of Materials, 2018, 30(9): 3110-3121. |
72 | TONG Ruiping, CHEN Guangxue, PAN Danhong, et al. Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors[J]. Biomacromolecules, 2019, 20(5): 2096-2104. |
73 | ZHU Tianxue, CHENG Yan, CAO Chunyan, et al. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance[J]. Chemical Engineering Journal, 2020, 385: 123912. |
74 | WANG Rongjie, CHI Wenhao, WAN Fuqiang, et al. Nanocage ferritin reinforced polyacrylamide hydrogel for wearable flexible strain sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21278-21286. |
75 | MO Jiaying, DAI Yuhang, ZHANG Chao, et al. Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions[J]. Materials Horizons, 2021, 8(12): 3409-3416. |
76 | PANG Qian, HU Hongtao, ZHANG Haiqi, et al. Temperature-responsive ionic conductive hydrogel for strain and temperature sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 26536-26547. |
77 | FAN Xiayue, ZHONG Cheng, LIU Jie, et al. Opportunities of flexible and portable electrochemical devices for energy storage: Expanding the spotlight onto semi-solid/solid electrolytes[J]. Chemical Reviews, 2022, 122(23): 17155-17239. |
78 | SHENG Feifan, YI Jia, SHEN Shen, et al. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44868-44877. |
79 | LI Qingsi, WEN Chiyu, YANG Jing, et al. Zwitterionic biomaterials[J]. Chemical Reviews, 2022, 122(23): 17073-17154. |
80 | LI Shineng, HE Xiaofeng, ZENG Zifan, et al. Mechanically ductile, ionically conductive and low-temperature tolerant hydrogel enabled by high-concentration saline towards flexible strain sensor[J]. Nano Energy, 2022, 103: 107789. |
81 | LIANG Yuning, DING Qiongling, WANG Hao, et al. Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring[J]. Nano-Micro Letters, 2022, 14(1): 183. |
82 | HAN Lu, LIU Kezhi, WANG Menghao, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance[J]. Advanced Functional Materials, 2018, 28(3): 1704195. |
83 | CAI Guofa, WANG Jiangxin, QIAN Kai, et al. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection[J]. Advanced Science, 2017, 4(2): 1600190. |
84 | CHEN Fan, ZHOU Dan, WANG Jiahui, et al. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement[J]. Angewandte Chemie International Edition, 2018, 57(22): 6568-6571. |
85 | XIE Zhihui, LI Heng, MI Haoyang, et al. Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications[J]. Journal of Materials Chemistry C, 2021, 9(31): 10127-10137. |
86 | WANG Meixiang, CHEN Yongmei, GAO Yang, et al. Rapid self-recoverable hydrogels with high toughness and excellent conductivity[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26610-26617. |
87 | WU Zixuan, SHI Wenxiong, DING Haojun, et al. Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing[J]. Journal of Materials Chemistry C, 2021, 9(39): 13668-13679. |
88 | YANG Ningning, QI Ping, REN Jing, et al. Polyvinyl alcohol/silk fibroin/borax hydrogel ionotronics: A highly stretchable, self-healable, and biocompatible sensing platform[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23632-23638. |
89 | DI Xiang, HOU Jiawen, YANG Mingming, et al. A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission[J]. Materials Horizons, 2022, 9(12): 3057-3069. |
90 | SUI Xiaojie, GUO Hongshuang, CHEN Pengguang, et al. Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature[J]. Advanced Functional Materials, 2020, 30(7): 1907986. |
91 | WEI Zhao, YANG Jianhai, ZHOU Jinxiong, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chemical Society Reviews, 2014, 43(23): 8114-8131. |
92 | YIN Jianyu, PAN Shenxin, WU Lili, et al. A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing and ultra-sensitive ionic hydrogel[J]. Journal of Materials Chemistry C, 2020, 8(48): 17349-17364. |
93 | ZHANG Zhuo, GAO Zhiliang, WANG Yitong, et al. Eco-friendly, self-healing hydrogels for adhesive and elastic strain sensors, circuit repairing, and flexible electronic devices[J]. Macromolecules, 2019, 52(6): 2531-2541. |
94 | WANG Zheng, ZHANG Yanan, YIN Yijia, et al. High-strength and injectable supramolecular hydrogel self-assembled by monomeric nucleoside for tooth extraction wound healing[J]. Advanced Materials, 2022, 34(13): e2108300. |
95 | ZHENG Haiyan, LIN Nan, HE Yanyi, et al. Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40013-40031. |
96 | PEI Xinjie, ZHANG Hua, ZHOU Yang, et al. Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions[J]. Materials Horizons, 2020, 7(7): 1872-1882. |
97 | WANG Kaifang, WANG Hai, LI Jingjing, et al. Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour[J]. Materials Horizons, 2021, 8(9): 2520-2532. |
98 | SU Xing, LUO Yang, TIAN Zhuoling, et al. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces[J]. Materials Horizons, 2020, 7(10): 2651-2661. |
99 | MO Funian, CHEN Ze, LIANG Guojin, et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities[J]. Advanced Energy Materials, 2020, 10(16): 2000035. |
100 | WEI Hua, WANG Zhenwu, ZHANG Hua, et al. Ultrastretchable, highly transparent, self-adhesive, and 3D-printable ionic hydrogels for multimode tactical sensing[J]. Chemistry of Materials, 2021, 33(17): 6731-6742. |
101 | ZHANG Yabin, LI Tianyu, MIAO Luyang, et al. A highly sensitive and ultra-stretchable zwitterionic liquid hydrogel-based sensor as anti-freezing ionic skin[J]. Journal of Materials Chemistry A, 2022, 10(8): 3970-3988. |
102 | FU Qingjin, HAO Sanwei, MENG Lei, et al. Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability[J]. ACS Nano, 2021, 15(11): 18469-18482. |
103 | YANG Jueying, CHEN Yu, ZHAO Lin, et al. Constructions and properties of physically cross-linked hydrogels based on natural polymers[J]. Polymer Reviews, 2022, 63(3): 574-612. |
104 | YUAN Yixin, ZHOU Jiulei, LU Guoqiang, et al. Highly stretchable, transparent, and self-adhesive ionic conductor for high-performance flexible sensors[J]. ACS Applied Polymer Materials, 2021, 3(3): 1610-1617. |
105 | ZHANG Wei, WU Baohu, SUN Shengtong, et al. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network[J]. Nature Communications, 2021, 12: 4082. |
106 | LI Gang, LI Chenglong, LI Guodong, et al. Development of conductive hydrogels for fabricating flexible strain sensors[J]. Small, 2022, 18(5): 2101518. |
107 | 王思恒, 杨欣欣, 刘鹤, 等. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2021, 40(5): 2646-2664. |
WANG Siheng, YANG Xinxin, LIU He, et al. Research progress in preparation and application of conductive hydrogels[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2646-2664. | |
108 | QIN Chaoran, LU Ang. Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator[J]. Carbohydrate Polymers, 2021, 274: 118667. |
109 | LONG You, BAI Ming, LIU Xinmeng, et al. A zwitterionic cellulose-based skin sensor for the real-time monitoring and antibacterial sensing wound dressing[J]. Carbohydrate Polymers, 2022, 297: 119974. |
110 | GAO Yang, JIA Fei, GAO Guanghui. Ultra-thin, transparent, anti-freezing organohydrogel film responded to a wide range of humidity and temperature[J]. Chemical Engineering Journal, 2022, 430: 132919. |
111 | GAO Wei, HIROKI Ota, DAISUKE Kiriya, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52(3): 523-533. |
112 | SHEN Zequn, ZHU Xiangyang, MAJIDI Carmel, et al. Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses[J]. Advanced Materials, 2021, 33(38): 2102069. |
113 | HUANG Hailong, HAN Lu, LI Junfeng, et al. Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor[J]. Journal of Materials Chemistry A, 2020, 8(20): 10291-10300. |
114 | YANG Wenjing, ZHANG Rui, GUO Xian, et al. Supramolecular polyelectrolyte hydrogel based on conjoined double-networks for multifunctional applications[J]. Journal of Materials Chemistry A, 2022, 10(44): 23649-23665. |
115 | 汪小钰, 胡平, 操齐高, 等. 不同模式多功能柔性传感器研究进展[J]. 化工进展, 2022, 41(10): 5474-5493. |
WANG Xiaoyu, HU Ping, CAO Qigao, et al. Latest research progress of multifunctional flexible sensors with different modes[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5474-5493. | |
116 | LIU Jing, WANG Haiyan, LIU Tao, et al. Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome[J]. Advanced Functional Materials, 2022, 32(40): 2204686. |
117 | LIU Wan, XIE Ruijie, ZHU Jingyu, et al. A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors[J]. NPJ Flexible Electronics, 2022, 6: 68. |
118 | CHEN Haotian, SONG Yu, GUO Hang, et al. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection[J]. Nano Energy, 2018, 51: 496-503. |
119 | PRASAD Eknath Lokhande, CHAVAN Umesh S, ABHISHEK Pandey. Materials and fabrication methods for electrochemical supercapacitors: Overview[J]. Electrochemical Energy Reviews, 2020, 3(1): 155-186. |
120 | LIU Zhuoxin, LIANG Guojin, ZHAN Yuexing, et al. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte[J]. Nano Energy, 2019, 58: 732-742. |
121 | CAO Xia, Yang JIE, WANG Ning, et al. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science[J]. Advanced Energy Materials, 2016, 6(23): 1600665. |
122 | LIU Zhuo, LI Hu, SHI Bojing, et al. Wearable and implantable triboelectric nanogenerators[J]. Advanced Functional Materials, 2019, 29(20): 1808820. |
123 | XU Zhenyu, ZHOU Fenghua, YAN Huizhen, et al. Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at -30℃[J]. Nano Energy, 2021, 90: 106614. |
124 | GUAN Qingbao, LIN Guanghui, GONG Yuzhu, et al. Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics[J]. Journal of Materials Chemistry A, 2019, 7(23): 13948-13955. |
125 | Sankar GANESH R, YOON Hong-Joon, KIM Sang-Woo. Recent trends of biocompatible triboelectric nanogenerators toward self-powered e-skin[J]. EcoMat, 2020, 2(4): e12065. |
126 | MA Xiaohao, JIANG Zhengfan, LIN Yuanjing. Flexible energy storage devices for wearable bioelectronics[J]. Journal of Semiconductors, 2021, 42(10): 101602. |
127 | LIU Yiming, WONG Tsz Hung, HUANG Xingcan, et al. Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing[J]. Nano Energy, 2022, 99: 107442. |
128 | QIN Ying, MO Jilong, LIU Yanhua, et al. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels[J]. Advanced Functional Materials, 2022, 32(27): 2201846. |
129 | CHEN Guoqi, HU Oudong, LU Jing, et al. Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor[J]. Chemical Engineering Journal, 2021, 425: 131505. |
130 | HUANG Jianren, GU Jianfeng, LIU Jiantao, et al. Environment stable ionic organohydrogel as a self-powered integrated system for wearable electronics[J]. Journal of Materials Chemistry A, 2021, 9(30): 16345-16358. |
131 | LI Na, YANG Shuangquan, CHEN Haosen, et al. Mechano-electrochemical perspectives on flexible lithium-ion batteries[J]. Minerals Metallurgy Materials, 2022, 29(5): 1019-1036. |
132 | FU Guopeng, SOUCEK Mark D, Thein KYU. Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane[J]. Solid State Ionics, 2018, 7(320): 310-315. |
133 | QIN Dejun, XUE Lixin, DU Bing, et al. Flexible fluorine containing ionic binders to mitigate the negative impact caused by the drastic volume fluctuation from silicon nano-particles in high capacity anodes of lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(20): 10928-10934. |
134 | CHEN Minfeng, CHEN Jizhang, ZHOU Weijun, et al. High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte[J]. Journal of Materials Chemistry A, 2019, 7(46): 26524-26532. |
135 | WANG Shuaibing, ZHANG Dong, HE Xiaomin, et al. Polyzwitterionic double-network ionogel electrolytes for supercapacitors with cryogenic-effective stability[J]. Chemical Engineering Journal, 2022, 438: 135607. |
136 | LU Jing, GU Jianfeng, HU Oudong, et al. Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices[J]. Journal of Materials Chemistry A, 2021, 9(34): 18406-18420. |
137 | BAO Dequan, WEN Zhen, SHI Jihong, et al. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature[J]. Journal of Materials Chemistry A, 2020, 8(27): 13787-13794. |
138 | SHENG Feifan, ZHANG Bo, ZHANG Yihan, et al. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring[J]. ACS Nano, 2022, 16(7): 10958-10967. |
139 | YANG Yanyu, WANG Xing, YANG Fei, et al. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels[J]. Advanced Materials, 2016, 28(33): 7178-7184. |
140 | CHEN Youyou, ZHANG Chen, YIN Rui, et al. Environmentally adaptive and durable hydrogels toward multi-sensory application[J]. Chemical Engineering Journal, 2022, 449: 137907. |
141 | 郑静霞, 陈国旗, 缪玥钥, 等. 高性能水凝胶传感器研究进展[J]. 功能高分子学报, 2022, 35(4): 299-313. |
ZHENG Jingxia, CHEN Guoqi, MIAO Yueyue, et al. Recent progress of hydrogel sensors with high performance[J]. Journal of Functional Polymers, 2022, 35(4): 299-313. | |
142 | WANG Jintao, WANG Liufang, WU Changsong, et al. Antibacterial zwitterionic polyelectrolyte hydrogel adhesives with adhesion strength mediated by electrostatic mismatch[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46816-46826. |
143 | SHEN Shihong, FAN Daidi, YUAN Yang, et al. An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds[J]. Chemical Engineering Journal, 2021, 426: 130610. |
144 | KIM Hyun-Jun, KIM Jae-Hwan, Ki-Woo JUN, et al. Silk nanofiber-networked bio-triboelectric generator: Silk bio-TEG[J]. Advanced Energy Materials, 2016, 6(8): 1502329. |
145 | KANG Seung-Kyun, Jahyun KOO, LEE Yoon Kyeung, et al. Advanced materials and devices for bioresorbable electronics[J]. Accounts of Chemical Research, 2018, 51(5): 988-998. |
[1] | LIU Mengmeng, QIU Liewei, WAN Zhiwei, LI Shijing, XU Yuyu. Design principle and application of self-healing hydrogel [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1350-1362. |
[2] | JU Fang. Fabrication and properties of synergistic antibacterial hydrogels based on the silver-sulfur coordination [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 1039-1046. |
[3] | WANG Shaofan, ZHOU Ying, HAO Kang’an, HUANG Anrong, ZHANG Ruju, WU Chong, ZUO Xiaoling. Self-healing and blue-light hydrogel with pH responsiveness [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4837-4846. |
[4] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[5] | XI Huimin, QIAN Kun, YU Kejing, LI Jie, ZHANG Zhongwei, XIONG Ziming, ZHANG Yaoliang. Preparation, modification and application of self-healing polyurethane elastomers based on disulfide and hydrogen bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 934-943. |
[6] | ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813. |
[7] | QIU Yijuan, LIN Jiawei, QIN Jirui, WU Jiayin, LIN Fengcai, LU Beili, TANG Lirong, HUANG Biao. Double dynamic covalent bond crosslinked nano-cellulose conductive hydrogel for a flexible sensor [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4406-4416. |
[8] | HU Tingyuan, LI Pingfan, WANG Wei, LIU Zhuang, JU Xiaojie, XIE Rui, CHU Liangyin. Research pogress of functional hydrogel materials for soft supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1578-1593. |
[9] | WANG Siheng, YANG Xinxin, LIU He, SHANG Shibin, SONG Zhanqian. Research progress in preparation and application of conductive hydrogels [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2646-2664. |
[10] | LEI Yu, TIAN Mengmeng, ZHANG Xinya, JIANG Xiang. Research progress on the self-healing property and applications of superhydrophobic surfaces [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2624-2633. |
[11] | Yulong WANG, Guosheng HU, Jingting ZHANG, Jingjing BAI, Qinniu LYU, Zhenzhong LI. Development of self-healing poly(urethane urea) with high performances based on the synergistic effect of disulfide bonds and hydrogen bonds [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 324-331. |
[12] | Yan BAO, Jingxiang CHANG. Research progress of durable superhydrophobic surface [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5148-5160. |
[13] | Ting LIANG, Zhenzhong FAN, Qingwang LIU, Jigang WANG, Li CAI, Yuanfeng FU, Qilei TONG. Research progress on the self-healing on superhydrophobic/superamphiphobic surface [J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3185-3193. |
[14] | TONG Xiaomei, HAO Qinqin, YAN Ziying, ZHENG Boxue. Preparation and application of epoxy resin self-healing microcapsules modified by silicone [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3555-3561. |
[15] | TANG Lirong, WANG Weibin, WANG Qinghua, ZHUANG Senyang, CHENG Cuixia, HUANG Biao. Esterified cellulose nanocrystals/poly(urea-urethane) self-healing materials based on aromatic disulfide bonds [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1381-1387. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |