Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2629-2644.DOI: 10.16085/j.issn.1000-6613.2023-2065

• Catalysis and material technology • Previous Articles    

Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review

ZHANG Jinpeng1(), QU Ting1, JING Jieying1,2(), LI Wenying1   

  1. 1.State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
    2.Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, Shanxi, China
  • Received:2023-11-28 Revised:2024-03-16 Online:2024-06-15 Published:2024-05-15
  • Contact: JING Jieying

吸附强化水气变换制氢复合催化剂研究进展

张金鹏1(), 屈婷1, 荆洁颖1,2(), 李文英1   

  1. 1.太原理工大学省部共建煤基能源清洁高效利用国家重点实验室,山西 太原 030024
    2.山西浙大新材料与化工研究院,山西 太原 030000
  • 通讯作者: 荆洁颖
  • 作者简介:张金鹏(1997—),女,博士研究生,研究方向为吸附强化制氢。E-mail:zhangjinpeng2502@126.com
  • 基金资助:
    国家重点研发计划(2022YFE0208400);山西浙大新材料与化工研究院研发项目(2021SX-FR002);中央高校基本科研业务费专项(2022ZFJH004)

Abstract:

Sorption enhanced water gas shift reaction (SEWGS) is one of the critical reactions for high-purity hydrogen preparation and carbon dioxide emission reduction. The composite catalyst is utilized to couple catalytic water gas shift (hydrogen production) with in-situ CO2 removal (decarbonization) during SEWGS, which could break the thermodynamic limitations by moving the chemical equilibrium towards the hydrogen production to achieve enhanced hydrogen production. SEWGS has the characteristic of one-step production of high-purity hydrogen. However, problems with the composite catalyst, such as sintering and hindered CO2 diffusion during continuous SEWGS hydrogen production, lead to a decrease in cycle stability, thereby affecting the hydrogen production efficiency. This work elaborates on the current research status of high-temperature Ni/CaO-based composite catalysts for sorption enhanced hydrogen production. The existing problems of Fe/CaO-based composite catalysts in SEWGS for hydrogen production are briefly described. The current status and core problems of medium temperature Cu/MgO-based and Cu/layer double hydroxides are discussed. From the perspectives of the catalytic components and the sorbent components of composite catalysts, the reasons for the reduced stability are analyzed, and the most effective modification methods currently available are briefly described. Furthermore, modification strategies are proposed from the design of the composite catalyst, operational conditions, and bed loading methods of reactor, to improve the cycle stability of composite catalyst, focusing on enhancing CO2 diffusion and lowering sintering resistance. It highlights that the design and development of composite catalysts that are simple in composition, easy to prepare, as well as high activity and stability, for the coupled production of hydrogen and decarbonization, are the future research direction in SEWGS for hydrogen production.

Key words: hydrogen production, composite catalyst, water gas shift reaction, sorption enhanced, CO2 diffusion, sintering, stability

摘要:

吸附强化水气变换反应(SEWGS)是实现高纯氢制备及二氧化碳(CO2)减排的关键反应之一。SEWGS借助复合催化剂将水气变换反应(制氢)和原位移除CO2反应(脱碳)耦合,打破热力学限制使反应平衡向制氢侧移动。SEWGS具有一步制取高纯氢气的特点,但复合催化剂在连续操作过程中由于烧结和CO2扩散受阻存在循环稳定性下降的问题,进而影响制氢效率。本文阐述了高温Ni/CaO基复合催化剂吸附强化制氢的研究现状,简述了Fe/CaO基复合催化剂SEWGS制氢面临的主要问题,回顾了中温Cu/MgO基和Cu/类水滑石基复合催化剂的SEWGS制氢现状及现阶段的核心问题。从复合催化剂的催化组分和吸附组分角度,分析了SEWGS制氢过程中复合催化剂循环稳定性降低的原因,简述了现阶段最有效的改性手段。进一步从增强CO2扩散和改善烧结角度入手,围绕复合催化剂设计、操作条件和床层装填方式等方面探讨提高复合催化剂循环稳定性的策略。指出设计开发组成简单、易制备、兼具高活性和高稳定性的复合催化剂实现制氢和脱碳耦合是今后SEWGS制氢的研究方向。

关键词: 制氢, 复合催化剂, 水气变换反应, 吸附强化, CO2扩散, 烧结, 稳定性

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd