Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2629-2644.DOI: 10.16085/j.issn.1000-6613.2023-2065
• Catalysis and material technology • Previous Articles
ZHANG Jinpeng1(), QU Ting1, JING Jieying1,2(), LI Wenying1
Received:
2023-11-28
Revised:
2024-03-16
Online:
2024-06-15
Published:
2024-05-15
Contact:
JING Jieying
通讯作者:
荆洁颖
作者简介:
张金鹏(1997—),女,博士研究生,研究方向为吸附强化制氢。E-mail:zhangjinpeng2502@126.com。
基金资助:
CLC Number:
ZHANG Jinpeng, QU Ting, JING Jieying, LI Wenying. Composite catalyst of sorption enhanced water gas shift for hydrogen production: A review[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2629-2644.
张金鹏, 屈婷, 荆洁颖, 李文英. 吸附强化水气变换制氢复合催化剂研究进展[J]. 化工进展, 2024, 43(5): 2629-2644.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2065
吸附剂分类 | 吸附剂 | 理论吸附容量/ | (吸附/再生温度)/℃ | 使用中存在的问题 | 优点 |
---|---|---|---|---|---|
高温吸附(>400℃) | 陶瓷基(以Li4SiO4为例[ | 0.367 | 450~600/720~750 | 动力学限制 | 循环稳定性好 |
CaO基[ | 0.786 | 600~750/800~950 | 再生温度高 | 便宜易得 | |
中温吸附(200~400℃) | MgO基[ | 1.100 | 250~350/380~450 | 吸附速率慢 | 再生温度低 |
类水滑石[ | 0.022 | 300~380/400~500 | 吸附容量低 | 循环稳定性能好、层间调控 | |
低温吸附(≤200℃) | 碱金属碳酸盐(以Na2CO3为例[ | 0.415(NaHCO3) 0.250(Na2CO3·3NaHCO3) | 50~100/120~200 | 碳酸化速率慢,且耐久性差,工作温度易受限 | 低成本 |
碳基、沸石类、金属有机骨架类、聚合物类吸附剂[ | 物理/化学吸附 | 120~200 (多用于变压吸附) | 压力影响显著 | 变压解吸 |
吸附剂分类 | 吸附剂 | 理论吸附容量/ | (吸附/再生温度)/℃ | 使用中存在的问题 | 优点 |
---|---|---|---|---|---|
高温吸附(>400℃) | 陶瓷基(以Li4SiO4为例[ | 0.367 | 450~600/720~750 | 动力学限制 | 循环稳定性好 |
CaO基[ | 0.786 | 600~750/800~950 | 再生温度高 | 便宜易得 | |
中温吸附(200~400℃) | MgO基[ | 1.100 | 250~350/380~450 | 吸附速率慢 | 再生温度低 |
类水滑石[ | 0.022 | 300~380/400~500 | 吸附容量低 | 循环稳定性能好、层间调控 | |
低温吸附(≤200℃) | 碱金属碳酸盐(以Na2CO3为例[ | 0.415(NaHCO3) 0.250(Na2CO3·3NaHCO3) | 50~100/120~200 | 碳酸化速率慢,且耐久性差,工作温度易受限 | 低成本 |
碳基、沸石类、金属有机骨架类、聚合物类吸附剂[ | 物理/化学吸附 | 120~200 (多用于变压吸附) | 压力影响显著 | 变压解吸 |
复合催化剂 | (反应温度/再生温度)/℃ | 1st/CO2吸附容量-最大循环/CO2吸附容量 | 1st/H2含量 |
---|---|---|---|
CaO@Ni-Al2O3[ | (500~700)/900 | 1/0.7% CO2含量 | 1/98.2% |
NiAl-(2nm)-CaO[ | (400~600)/800 | 1/0.54-30/0.43 | 1/98% |
Fe-Mn/CaO-Ca12Al14O33[ | 600/(850~920) | 1/0.53-20/0.43 | 1/95.4% |
K2CO3促进Cu/MgO-Al2O3[ | 300/(350~420) | 1/0.34mmol/gDFMs-10/0.25mmol/gDFMs | 1/99.9% |
不同装填方式Cu/Ce0.6Zr0.4O2和AMS促进Mg95Ca5[ | 300/420 | 1/0.62-10/0.42 | 1/99.39% |
Cu-MgHAlH和NaNO3掺杂类水滑石物理混合[ | 250 | 1/4.40mmol/gDFMs-7/2.44mmol/gDFMs | 1/99% |
四段床层(Cu/Ce0.6Zr0.4O2|AMS-Mg95Ca5及KLDO10)[ | 300/420 | 1/0.28mmol/gsorbent-10/0.26mmol/gsorbent | 1/99.9% |
复合催化剂 | (反应温度/再生温度)/℃ | 1st/CO2吸附容量-最大循环/CO2吸附容量 | 1st/H2含量 |
---|---|---|---|
CaO@Ni-Al2O3[ | (500~700)/900 | 1/0.7% CO2含量 | 1/98.2% |
NiAl-(2nm)-CaO[ | (400~600)/800 | 1/0.54-30/0.43 | 1/98% |
Fe-Mn/CaO-Ca12Al14O33[ | 600/(850~920) | 1/0.53-20/0.43 | 1/95.4% |
K2CO3促进Cu/MgO-Al2O3[ | 300/(350~420) | 1/0.34mmol/gDFMs-10/0.25mmol/gDFMs | 1/99.9% |
不同装填方式Cu/Ce0.6Zr0.4O2和AMS促进Mg95Ca5[ | 300/420 | 1/0.62-10/0.42 | 1/99.39% |
Cu-MgHAlH和NaNO3掺杂类水滑石物理混合[ | 250 | 1/4.40mmol/gDFMs-7/2.44mmol/gDFMs | 1/99% |
四段床层(Cu/Ce0.6Zr0.4O2|AMS-Mg95Ca5及KLDO10)[ | 300/420 | 1/0.28mmol/gsorbent-10/0.26mmol/gsorbent | 1/99.9% |
1 | DUTTA Suman. A review on production, storage of hydrogen and its utilization as an energy resource[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1148-1156. |
2 | BAYKARA Sema Z. Hydrogen: A brief overview on its sources, production and environmental impact[J]. International Journal of Hydrogen Energy, 2018, 43(23): 10605-10614. |
3 | JI Mengdi, WANG Jianlong. Review and comparison of various hydrogen production methods based on costs and life cycle impact assessment indicators[J]. International Journal of Hydrogen Energy, 2021, 46(78): 38612-38635. |
4 | 刘璐, 许凯, 荆洁颖, 等. CO2吸附强化CH4/H2O重整制氢催化剂研究进展[J]. 洁净煤技术, 2021, 27(1): 73-82. |
LIU Lu, XU Kai, JING Jieying, et al. Research progress on catalysts for hydrogen production by CO2 sorption enhancement of CH4/H2O reforming[J]. Clean Coal Technology, 2021, 27(1): 73-82. | |
5 | HARRISON Douglas P. Sorption-enhanced hydrogen production: A review[J]. Industrial & Engineering Chemistry Research, 2008, 47(17): 6486-6501. |
6 | LOPEZ ORTIZ Alejandro, HARRISON Douglas P. Hydrogen production using sorption-enhanced reaction[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5102-5109. |
7 | BARAJ Erlisa, Karel CIAHOTNÝ, Tomáš HLINČÍK. The water gas shift reaction: Catalysts and reaction mechanism[J]. Fuel, 2021, 288: 119817. |
8 | CHEN Wei-Hsin, CHEN Chia-Yang. Water gas shift reaction for hydrogen production and carbon dioxide capture: A review[J]. Applied Energy, 2020, 258: 114078. |
9 | ZHOU Limin, LIU Yanyan, LIU Shuling, et al. For more and purer hydrogen—The progress and challenges in water gas shift reaction[J]. Journal of Energy Chemistry, 2023, 83: 363-396. |
10 | 荆洁颖, 屈婷, 陶威, 等. CO2原位捕集强化水气变换制氢研究进展[J]. 煤炭学报, 2023, 48(2): 986-995. |
JING Jieying, QU Ting, TAO Wei, et al. An overview on CO2 sorption enhanced water gas shift for hydrogen production[J]. Journal of China Coal Society, 2023, 48(2): 986-995. | |
11 | GAO Wanlin, ZHOU Tuantuan, GAO Yanshan, et al. Molten salts-modified MgO-based adsorbents for intermediate-temperature CO2 capture: A review[J]. Journal of Energy Chemistry, 2017, 26(5): 830-838. |
12 | DOU Binlin, WANG Chao, SONG Yongchen, et al. Solid sorbents for in-situ CO2 removal during sorption-enhanced steam reforming process: A review[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 536-546. |
13 | MENDES D, MENDES A, MADEIRA L M, et al. The water-gas shift reaction: From conventional catalytic systems to Pd-based membrane reactors—A review[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(1): 111-137. |
14 | ZHANG Chunxiao, LI Yingjie, HE Zirui, et al. Microtubular Fe/Mn-promoted CaO-Ca12Al14O33 bi-functional material for H2 production from sorption enhanced water gas shift[J]. Applied Catalysis B: Environmental, 2022, 314: 121474. |
15 | POZZO Alessandro DAL, ARMUTLULU Andaç, REKHTINA Margarita, et al. CO2 uptake and cyclic stability of MgO-based CO2 sorbents promoted with alkali metal nitrates and their eutectic mixtures[J]. ACS Applied Energy Materials, 2019, 2(2): 1295-1307. |
16 | HU Yingchao, LU Hongyuan, LIU Wenqiang, et al. Incorporation of CaO into inert supports for enhanced CO2 capture: A review[J]. Chemical Engineering Journal, 2020, 396: 125253. |
17 | 徐运飞, 李英杰, 王涛, 等. MgO吸附剂捕集CO2的研究进展[J]. 洁净煤技术, 2021, 27(1): 125-134. |
XU Yunfei, LI Yingjie, WANG Tao, et al. Research progress on MgO sorbents for CO2 capture[J]. Clean Coal Technology, 2021, 27(1): 125-134. | |
18 | GAO Wanlin, XIAO Jiewen, WANG Qiang, et al. Unravelling the mechanism of intermediate-temperature CO2 interaction with molten-NaNO3-salt-promoted MgO[J]. Advanced Materials, 2022, 34(4): 2106677. |
19 | LU Hong, LU Yongqi, Massoud ROSTAM-ABADI. CO2 sorbents for a sorption-enhanced water-gas-shift process in IGCC plants: A thermodynamic analysis and process simulation study[J]. International Journal of Hydrogen Energy, 2013, 38(16): 6663-6672. |
20 | SEGGIANI M, PUCCINI M, VITOLO S. High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects[J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 741-748. |
21 | 江涛, 魏小娟, 王胜平, 等. 固体吸附剂捕集CO2的研究进展[J]. 洁净煤技术, 2022, 28(1): 42-57. |
JIANG Tao, WEI Xiaojuan, WANG Shengping, et al. Research progress on solid sorbents for CO2 capture[J]. Clean Coal Technology, 2022, 28(1): 42-57. | |
22 | YANG Zhongzhu, WEI Jingjing, ZENG Guangming, et al. A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2 [J]. Coordination Chemistry Reviews, 2019, 386: 154-182. |
23 | LIU Wenqiang, AN Hui, QIN Changlei, et al. Performance enhancement of calcium oxide sorbents for cyclic CO2 capture—A review[J]. Energy & Fuels, 2012, 26(5): 2751-2767. |
24 | 耿一琪, 郭彦霞, 樊飙, 等. CaO基吸附剂捕集CO2及其抗烧结改性研究进展[J]. 燃料化学学报, 2021, 49(7): 998-1013. |
GENG Yiqi, GUO Yanxia, FAN Biao, et al. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013. | |
25 | 王胜平, 沈辉, 范莎莎, 等. 固体二氧化碳吸附剂研究进展[J]. 化学工业与工程, 2014, 31(1): 72-78. |
WANG Shengping, SHEN Hui, FAN Shasha, et al. Research progress of solid adsorbents for CO2 capture[J]. Chemical Industry and Engineering, 2014, 31(1): 72-78. | |
26 | RODRIGUEZ J A, MA S, LIU P, et al. Activity of CeO x and TiO x nanoparticles grown on Au(111) in the water-gas shift reaction[J]. Science, 2007, 318(5857): 1757-1760. |
27 | LIN Lili, ZHOU Wu, GAO Rui, et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts[J]. Nature, 2017, 544(7648): 80-83. |
28 | YAO Siyu, ZHANG Xiao, ZHOU Wu, et al. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction[J]. Science, 2017, 357(6349): 389-393. |
29 | LIANG Y, HARRISON D P, GUPTA R P, et al. Carbon dioxide capture using dry sodium-based sorbents[J]. Energy & Fuels, 2004, 18(2): 569-575. |
30 | JING Jieying, LIU Lu, XU Kai, et al. Improved hydrogen production performance of Ni-Al2O3/CaO-CaZrO3 composite catalyst for CO2 sorption enhanced CH4/H2O reforming[J]. International Journal of Hydrogen Energy, 2023, 48(7): 2558-2570. |
31 | KIM Sung Min, ARMUTLULU Andac, KIERZKOWSKA Agnieszka M, et al. Development of an effective bi-functional Ni-CaO catalyst-sorbent for the sorption-enhanced water gas shift reaction through structural optimization and the controlled deposition of a stabilizer by atomic layer deposition[J]. Sustainable Energy & Fuels, 2020, 4(2): 713-729. |
32 | DANG Chengxiong, LIU Liqiang, YANG Guangxing, et al. Mg-promoted Ni-CaO microsphere as bi-functional catalyst for hydrogen production from sorption-enhanced steam reforming of glycerol[J]. Chemical Engineering Journal, 2020, 383: 123204. |
33 | 方书起, 王毓谦, 李攀, 等. 生物油催化重整制氢研究进展[J]. 化工进展, 2022, 41(3): 1330-1339. |
FANG Shuqi, WANG Yuqian, LI Pan, et al. Research progress of hydrogen production by catalytic reforming of bio-oil[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1330-1339. | |
34 | SAEIDI Samrand, András SÁPI, KHOJA Asif Hussain, et al. Evolution paths from gray to turquoise hydrogen via catalytic steam methane reforming: Current challenges and future developments[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113392. |
35 | Seong BIN JO, Jin Hyeok WOO, LEE Jong Heon, et al. CO2 green technologies in CO2 capture and direct utilization processes: Methanation, reverse water-gas shift, and dry reforming of methane[J]. Sustainable Energy & Fuels, 2020, 4(11): 5543-5549. |
36 | TSIOTSIAS Anastasios I, CHARISIOU Nikolaos D, YENTEKAKIS Ioannis V, et al. Bimetallic Ni-based catalysts for CO2 methanation: A review[J]. Nanomaterials, 2020, 11(1): 28. |
37 | KONG Meng, ALBRECHT Karl O, SHANKS Brent H, et al. Development of a combined catalyst and sorbent for the water gas shift reaction[J]. Industrial & Engineering Chemistry Research, 2014, 53(23): 9570-9577. |
38 | WATANABE Keita, MIYAO Toshihiro, HIGASHIYAMA Kazutoshi, et al. High temperature water-gas shift reaction over hollow Ni-Fe-Al oxide nano-composite catalysts prepared by the solution-spray plasma technique[J]. Catalysis Communications, 2009, 10(14): 1952-1955. |
39 | ASHOK Jangam, Ming hui WAI, KAWI Sibudjing. Nickel-based catalysts for high-temperature water gas shift reaction-methane suppression[J]. ChemCatChem, 2018, 10(18): 3927-3942. |
40 | SHOKROLLAHI YANCHESHMEH Marziehossadat, RADFARNIA Hamid R, ILIUTA Maria C. Sustainable production of high-purity hydrogen by sorption enhanced steam reforming of glycerol over CeO2-promoted Ca9Al6O18-CaO/NiO bifunctional material[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9774-9786. |
41 | SCHWACH Pierre, PAN Xiulian, BAO Xinhe. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects[J]. Chemical Reviews, 2017, 117(13): 8497-8520. |
42 | DING Y, ALPAY E. Adsorption-enhanced steam–methane reforming[J]. Chemical Engineering Science, 2000, 55(18): 3929-3940. |
43 | YI Kwang Bok, HARRISON Douglas P. Low-pressure sorption-enhanced hydrogen production[J]. Industrial & Engineering Chemistry Research, 2005, 44(6): 1665-1669. |
44 | AHMED Shabbir, LEE Sheldon H D, FERRANDON Magali S. Catalytic steam reforming of biogas—Effects of feed composition and operating conditions[J]. International Journal of Hydrogen Energy, 2015, 40(2): 1005-1015. |
45 | SABOKMALEK Saleh, ALAVI Seyed Mehdi, REZAEI Mehran, et al. Fabrication and catalytic evaluation of Ni/CaO-Al2O3 in glycerol steam reforming: Effect of Ni loading[J]. Journal of the Energy Institute, 2023, 109: 101270. |
46 | LI Zhenshan, CAI Ningsheng, HUANG Yuyu, et al. Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent[J]. Energy & Fuels, 2005, 19(4): 1447-1452. |
47 | MARTAVALTZI Christina S, PEFKOS Tilemachos D, LEMONIDOU Angeliki A. Operational window of sorption enhanced steam reforming of methane over CaO-Ca12Al14O33 [J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 539-545. |
48 | XIE Miaomiao, ZHOU Zhiming, QI Yang, et al. Sorption-enhanced steam methane reforming by in situ CO2 capture on a CaO-Ca9Al6O18 sorbent[J]. Chemical Engineering Journal, 2012, 207/208: 142-150. |
49 | KIM Jong-Nam, Chang Hyun KO, YI Kwang Bok. Sorption enhanced hydrogen production using one-body CaO-Ca12Al14O33-Ni composite as catalytic absorbent[J]. International Journal of Hydrogen Energy, 2013, 38(14): 6072-6078. |
50 | CHEN X, YANG L, ZHOU Z M, et al. Core-shell structured CaO-Ca9Al6O18@Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming[J]. Chemical Engineering Science, 2017, 163: 114-122. |
51 | XU Jiayan, XUE Xiaochong, WU Sufang. Stability of the Ni-TiO2@nano CaO/Al2O3 complex catalyst used in ReSER process for hydrogen production[J]. International Journal of Hydrogen Energy, 2016, 41(16): 6781-6786. |
52 | 许凯. 吸附强化制氢CaO-Ca3Al2O6@Ni-SiO2复合催化剂制备及结构调控[D]. 太原: 太原理工大学, 2022. |
XU Kai. Preparation and structure regulation of CaO-Ca3Al2O6@Ni-SiO2 composite catalyst for adsorption-enhanced hydrogen production[D].Taiyuan: Taiyuan University of Technology, 2022. | |
53 | YALCIN Ozgen, SOURAV Sagar, WACHS Israel E. Design of Cr-free promoted copper-iron oxide-based high-temperature water-gas shift catalysts[J]. ACS Catalysis, 2023, 13(19): 12681-12691. |
54 | ZAMBONI I, COURSON C, KIENNEMANN A. Fe-Ca interactions in Fe-based/CaO catalyst/sorbent for CO2 sorption and hydrogen production from toluene steam reforming[J]. Applied Catalysis B: Environmental, 2017, 203: 154-165. |
55 | MÜLLER Christoph R, PACCIANI Roberta, BOHN Christopher D, et al. Investigation of the enhanced water gas shift reaction using natural and synthetic sorbents for the capture of CO2 [J]. Industrial & Engineering Chemistry Research, 2009, 48(23): 10284-10291. |
56 | DAMMA Devaiah, JAMPAIAH Deshetti, WELTON Aaron, et al. Effect of Nb modification on the structural and catalytic property of Fe/Nb/M (M = Mn, Co, Ni, and Cu) catalyst for high temperature water-gas shift reaction[J]. Catalysis Today, 2020, 355: 921-931. |
57 | PARK Yong Min, CHO Jae Min, HAN Gui Young, et al. Roles of highly ordered mesoporous structures of Fe-Ni bimetal oxides for an enhanced high-temperature water-gas shift reaction activity[J]. Catalysis Science & Technology, 2021, 11(9): 3251-3260. |
58 | HAN Long Han, MA Kaili, WU Yuelun, et al. Promoted calcium looping H2 production via catalytic reforming of polycyclic aromatic hydrocarbon using a synthesized CO2 absorbent prepared by impregnation[J]. International Journal of Energy Research, 2021, 45(7): 10409-10424. |
59 | DI FELICE L, COURSON C, NIZNANSKY D, et al. Biomass gasification with catalytic tar reforming: A model study into activity enhancement of calcium- and magnesium-oxide-based catalytic materials by incorporation of iron[J]. Energy & Fuels, 2010, 24(7): 4034-4045. |
60 | AZHARUDDIN M, TSUDA H, WU S, et al. Catalytic decomposition of biomass tars with iron oxide catalysts[J]. Fuel, 2008, 87(4/5): 451-459. |
61 | TWIGG Martyn V, SPENCER Michael S. Deactivation of supported copper metal catalysts for hydrogenation reactions[J]. Applied Catalysis A: General, 2001, 212(1/2): 161-174. |
62 | SUN Zheyi, SHAO Bin, ZHANG Yun, et al. Integrated CO2 capture and methanation from the intermediate-temperature flue gas on dual functional hybrids of AMS/CaMgO||NiCo[J]. Separation and Purification Technology, 2023, 307: 122680. |
63 | HU Yuanwu, CUI Hongjie, CHENG Zhenmin, et al. Sorption-enhanced water gas shift reaction by in situ CO2 capture on an alkali metal salt-promoted MgO-CaCO3 sorbent[J]. Chemical Engineering Journal, 2019, 377: 119823. |
64 | HU Yuanwu, CHENG Zhenmin, ZHOU Zhiming. High-purity H2 production by sorption-enhanced water gas shift on a K2CO3-promoted Cu/MgO-Al2O3 difunctional material[J]. Sustainable Energy & Fuels, 2021, 5(13): 3340-3350. |
65 | HUANG Pu, GUO Yafei, WANG Guodong, et al. Insights into nickel-based dual function materials for CO2 sorption and methanation: Effect of reduction temperature[J]. Energy & Fuels, 2021, 35(24): 20185-20196. |
66 | GAO Wanlin, VASILIADES Michalis A, DAMASKINOS Constantinos M, et al. Molten salt-promoted MgO adsorbents for CO2 capture: Transient kinetic studies[J]. Environmental Science & Technology, 2021, 55(8): 4513-4521. |
67 | GAO Wanlin, ZHOU Tuantuan, GAO Yanshan, et al. Study on MNO3/NO2 (M = Li, Na, and K)/MgO composites for intermediate-temperature CO2 capture[J]. Energy & Fuels, 2019, 33(3): 1704-1712. |
68 | HUANG Pu, CHU Jie, FU Jiali, et al. Influence of reduction conditions on the structure-activity relationships of NaNO3-promoted Ni/MgO dual function materials for integrated CO2 capture and methanation[J]. Chemical Engineering Journal, 2023, 467: 143431. |
69 | LEE Chan Hyun, KIM Suji, YOON Hyung Jin, et al. Water gas shift and sorption-enhanced water gas shift reactions using hydrothermally synthesized novel Cu-Mg-Al hydrotalcite-based catalysts for hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2021, 145: 111064. |
70 | 刘璐. Ni-Al2O3/CaO-CaZrO3复合催化剂制备及吸附强化制氢性能调变[D]. 太原: 太原理工大学, 2022. |
LIU Lu. Synthesis of Ni-Al2O3/CaO-CaZrO3 composite catalyst and modulation of its sorption enhanced hydrogen production performance[D]. Taiyuan: Taiyuan University of Technology, 2022. | |
71 | XU Huawu, HU Yuanwu, CHENG Zhenmin, et al. Production of high-purity H2 through sorption-enhanced water gas shift over a combination of two intermediate-temperature CO2 sorbents[J]. International Journal of Hydrogen Energy, 2023, 48(64): 25185-25196. |
72 | LYSIKOV A I, OKUNEV A G, NETSKINA O V. Study of a nickel catalyst under conditions of the SER process: Influence of RedOx cycling[J]. International Journal of Hydrogen Energy, 2013, 38(25): 10354-10363. |
73 | ROGERS Kyle A, FU Jile, XU Yiyi, et al. Guaiacol deoxygenation using ceria-zirconia based catalysts with hydrogen produced internally via water-gas-shift reaction[J]. Catalysis Today, 2023, 407: 68-79. |
74 | GINÉS M J L, AMADEO N, LABORDE M, et al. Activity and structure-sensitivity of the water-gas shift reaction over CuZnAl mixed oxide catalysts[J]. Applied Catalysis A: General, 1995, 131(2): 283-296. |
75 | HOSSAIN Mohammad M, AHMED Shakeel. Cu-based mixed metal oxide catalysts for WGSR: Reduction kinetics and catalytic activity[J]. The Canadian Journal of Chemical Engineering, 2013, 91(8): 1450-1458. |
76 | LUNKENBEIN Thomas, SCHUMANN Julia, BEHRENS Malte, et al. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions[J]. Angewandte Chemie International Edition, 2015, 54(15): 4544-4548. |
77 | ZHOU Yan, CHEN Aling, NING Jing, et al. Electronic and geometric structure of the copper-ceria interface on Cu/CeO2 catalysts[J]. Chinese Journal of Catalysis, 2020, 41(6): 928-937. |
78 | LIN Jiann-Horng, BISWAS Prakash, GULIANTS Vadim V, et al. Hydrogen production by water-gas shift reaction over bimetallic Cu-Ni catalysts supported on La-doped mesoporous ceria[J]. Applied Catalysis A: General, 2010, 387(1/2): 87-94. |
79 | MABOUDI N, MESHKANI Fereshteh, REZAEI M. Influence of group IIA metals on the performance of the Ni Cu/CeO2Al2O3 catalysts in high-temperature water gas shift reaction[J]. International Journal of Hydrogen Energy, 2019, 44(5): 2694-2703. |
80 | ZANG Pengchao, TANG Jiyun, ZHANG Xiaoyang, et al. Strategies to improve CaO absorption cycle stability and progress of catalysts in Ca-based DFMs for integrated CO2 capture-conversion: A critical review[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 111047. |
81 | DEREVSCHIKOV V S, LYSIKOV A I, OKUNEV A G. High temperature CaO/Y2O3 carbon dioxide absorbent with enhanced stability for sorption-enhanced reforming applications[J]. Industrial & Engineering Chemistry Research, 2011, 50(22): 12741-12749. |
82 | LIU Hao, WU Sufang. Preparation of high sorption durability nano-CaO-ZnO CO2 adsorbent[J]. Energy & Fuels, 2019, 33(8): 7626-7633. |
83 | NAEEM Muhammad Awais, ARMUTLULU Andac, IMTIAZ Qasim, et al. Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents[J]. Nature Communications, 2018, 9(1): 2408. |
84 | HU Yingchao, LIU Wenqiang, CHEN Hongqiang, et al. Screening of inert solid supports for CaO-based sorbents for high temperature CO2 capture[J]. Fuel, 2016, 181: 199-206. |
85 | JING Jieying, LI Tingyu, ZHANG Xuewei, et al. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism[J]. Applied Energy, 2017, 199: 225-233. |
86 | 李清. 高效抗烧结钙基二氧化碳吸附剂的制备及性能研究[D]. 太原: 太原理工大学, 2019. |
LI Qing. Preparation and performance of high-efficiency anti-sintering calcium-based CO2 sorbents[D].Taiyuan: Taiyuan University of Technology, 2019. | |
87 | CUI Hongjie, CHENG Zhenmin, ZHOU Zhiming. Unravelling the role of alkaline earth metal carbonates in intermediate temperature CO2 capture using alkali metal salt-promoted MgO-based sorbents[J]. Journal of Materials Chemistry A, 2020, 8(35): 18280-18291. |
88 | ZHANG Keling, LI Xiaohong Shari, LI Weizhen, et al. Phase transfer-catalyzed fast CO2 absorption by MgO-based absorbents with high cycling capacity[J]. Advanced Materials Interfaces, 2014, 1(3): 1400030. |
89 | HARADA Takuya, SIMEON Fritz, HAMAD Esam Z, et al. Alkali metal nitrate-promoted high-capacity MgO adsorbents for regenerable CO2 capture at moderate temperatures[J]. Chemistry of Materials, 2015, 27(6): 1943-1949. |
90 | KWAK Jin-Su, KIM Kang-Yeong, YOON Ji Woong, et al. Interfacial interactions govern the mechanisms of CO2 absorption and desorption on A2CO3-promoted MgO (A=Na, K, Rb, and Cs) absorbents[J]. The Journal of Physical Chemistry C, 2018, 122(35): 20289-20300. |
91 | Anh-Tuan VU, Keon HO, JIN Seongmin, et al. Double sodium salt-promoted mesoporous MgO sorbent with high CO2 sorption capacity at intermediate temperatures under dry and wet conditions[J]. Chemical Engineering Journal, 2016, 291: 161-173. |
92 | 邓少碧, 边洲峰. 核壳结构在甲烷干重整中的应用[J]. 化工进展, 2023, 42(1): 247-254. |
DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. | |
93 | 曹敏, 毛玉娇, 王倩倩, 等. 金属催化剂烧结机制及抗烧结策略[J]. 化工进展, 2023, 42(2): 744-755. |
CAO Min, MAO Yujiao, WANG Qianqian, et al. Sintering mechanism and sintering-resistant strategies for metal-based catalyst[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 744-755. | |
94 | SHISHIDO Tetsuya, YAMAMOTO Manabu, ATAKE Ikuo, et al. Cu/Zn-based catalysts improved by adding magnesium for water-gas shift reaction[J]. Journal of Molecular Catalysis A: Chemical, 2006, 253(1/2): 270-278. |
95 | LI Didi, XU Fang, TANG Xuan, et al. Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol[J]. Nature Catalysis, 2022, 5: 99-108. |
96 | YU J, QIN X, YANG Y, et al. Highly stable Pt/CeO2 catalyst with embedding structure toward water-gas shift reaction[J]. Journal of the American Chemical Society, 2024, 146(1): 1071-1080. |
97 | SHAO Bin, ZHANG Yun, SUN Zheyi, et al. CO2 capture and in situ conversion: Recent progresses and perspectives[J]. Green Chemical Engineering, 2022, 3(3): 189-198. |
98 | OLIVEIRA Eduardo L G, GRANDE Carlos A, RODRIGUES Alírio E. Effect of catalyst activity in SMR-SERP for hydrogen production: Commercial vs. large-pore catalyst[J]. Chemical Engineering Science, 2011, 66(3): 342-354. |
[1] | ZHOU Anning, JIANG Yuhan, LIU Moxuan, ZHAO Wei, LI Zhen. Research progress in hydrogen production from electrolytic coal slurry: Effects of coal rank and minerals, and the evolution of coal structure [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2294-2310. |
[2] | LI Si, TAO Yiyue, XIAO Zhenchong, ZHANG Liang, LI Jun, ZHU Xun, LIAO Qiang. Electrochemical characteristics of the coupled system of thermally regenerative battery stack and electrochemical CO2 reduction cell [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2568-2575. |
[3] | LI Kai, WEI Helin, ZUO Xiahua, YANG Weimin, YAN Hua, AN Ying. Experimental study on the preparation and stability of water-based carbon black-collagen nanofluids [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1944-1952. |
[4] | QI Yabing, WU Zibo, YANG Qingcui. Research advances of preparation of Pickering emulsions and their stability [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2017-2030. |
[5] | LIU Han, QU Minglu, YE Zhendong, YANG Fan, HUANG Beijia, ZHANG Yaning, LIU Hongzhi. Evaluation of the thermal energy storage performance of calcium-magnesium binary composite salt hydrates [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1764-1773. |
[6] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[7] | LU Zhiqiang, SHI Yu, CHEN Pengyu, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of a vertical thermally regenerative ammonia-based battery with a high-concentration ammonia chamber [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1224-1231. |
[8] | LIU Zepeng, ZENG Jijun, TANG Xiaobo, ZHAO Bo, HAN Sheng, LIAO Yuanhao, ZHANG Wei. Thermodynamic properties of four alkyl imidazolium phosphate ionic liquids [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1484-1491. |
[9] | SUN Hongjun, LI Teng, LI Jinxia, DING Hongbing. Disturbance wave height prediction model based on Kelvin-Helmholtz instability and interfacial shear [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 609-618. |
[10] | SUN Yue, WANG Sijia, WU Mingxia, SONG Xianyu, XU Shouhong. Synthesis, performance regulation and application of pH/temperature responsive polymer PMAA-b-PDMAEMA [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 480-489. |
[11] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[14] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[15] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |