Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2463-2474.DOI: 10.16085/j.issn.1000-6613.2023-1217
• New and renewable energy • Previous Articles
HAN Wei(), HAN Hengwen, CHENG Wei, TANG Weijian
Received:
2023-07-17
Revised:
2023-08-08
Online:
2024-06-15
Published:
2024-05-15
Contact:
HAN Wei
通讯作者:
韩伟
作者简介:
韩伟(1982—),男,博士,副研究员,研究方向为石油洁净和转化过程化学及其催化剂、催化材料。E-mail:hanwei.ripp@sinopec.com。
CLC Number:
HAN Wei, HAN Hengwen, CHENG Wei, TANG Weijian. Research progress of biomass fuels technology driven by carbon neutrality[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2463-2474.
韩伟, 韩恒文, 程薇, 汤玮健. 碳中和目标驱动下生物质燃料技术研究进展[J]. 化工进展, 2024, 43(5): 2463-2474.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-1217
项目 | EN14214生物柴油 | 生物质燃料油 | ||
---|---|---|---|---|
格列哌醇类 | DMC制生物燃料油 | 生态柴油 | ||
反应物 | 甲醇/乙醇 | 乙酸甲酯/乙酸乙酯 | 碳酸二甲酯/二乙酯 | 甲醇/乙醇 |
催化剂 | NaOH、KOH | 酸、碱、酶 | 碱或酶 | 酶 |
产物 | FAME/FAEE | 甘油三乙酯、FAME/FAEE | 脂肪酸甘油碳酸酯 | 脂肪酸甘油单酯、FAME/FAEE |
副产物 | 甘油 | 无 | 无 | 无 |
分离清洗过程 | 非常复杂 | 无须 | 无须 | 无须 |
设备投资 | 中等 | 低 | 低 | 低 |
原料油中游离脂肪酸 | 转化为皂 | 转化为b-Fuels | 转化为b-Fuels | 转化为b-Fuels |
催化剂花费 | 低 | 低 | 低 | 低 |
环境影响 | 高(碱、盐污水处理) | 低 | 低 | 低 |
项目 | EN14214生物柴油 | 生物质燃料油 | ||
---|---|---|---|---|
格列哌醇类 | DMC制生物燃料油 | 生态柴油 | ||
反应物 | 甲醇/乙醇 | 乙酸甲酯/乙酸乙酯 | 碳酸二甲酯/二乙酯 | 甲醇/乙醇 |
催化剂 | NaOH、KOH | 酸、碱、酶 | 碱或酶 | 酶 |
产物 | FAME/FAEE | 甘油三乙酯、FAME/FAEE | 脂肪酸甘油碳酸酯 | 脂肪酸甘油单酯、FAME/FAEE |
副产物 | 甘油 | 无 | 无 | 无 |
分离清洗过程 | 非常复杂 | 无须 | 无须 | 无须 |
设备投资 | 中等 | 低 | 低 | 低 |
原料油中游离脂肪酸 | 转化为皂 | 转化为b-Fuels | 转化为b-Fuels | 转化为b-Fuels |
催化剂花费 | 低 | 低 | 低 | 低 |
环境影响 | 高(碱、盐污水处理) | 低 | 低 | 低 |
原料 | 质量比 | 催化剂 | 温度/℃ | 压力/MPa | 空速/h-1 |
---|---|---|---|---|---|
SGRO/废食用油[ | 80/20 | NiMo/Al2O3 | 350 | 5.5 | 2.0 |
AGO/废煎炸油[ | 80/20、50/50 | NiMo/Al2O3 | 330~370 | 5.6 | 1.0 |
SGRO/麻风树油[ | 90/10、80/20 | CoMo/Al2O3、NiMo/Al2O3 | 300 | 5.0 | — |
柴油/废食用油[ | 75/25 | NiW/SiO2-Al2O3、NiMo/Al2O3 | 340~380 | 5.0 | 2.0~4.0 |
HVGO/菜籽油[ | 90/10、80/20 | NiMo/Al2O3 | 360~395 | 8.0~10.0 | 1.0~2.5 |
SGRO/RSO[ | 70/30 | Mo/Al2O3、NiMo/Al2O3-SAPO-11 | 350~380 | 4.0~7.0 | 1.0~1.5 |
原料 | 质量比 | 催化剂 | 温度/℃ | 压力/MPa | 空速/h-1 |
---|---|---|---|---|---|
SGRO/废食用油[ | 80/20 | NiMo/Al2O3 | 350 | 5.5 | 2.0 |
AGO/废煎炸油[ | 80/20、50/50 | NiMo/Al2O3 | 330~370 | 5.6 | 1.0 |
SGRO/麻风树油[ | 90/10、80/20 | CoMo/Al2O3、NiMo/Al2O3 | 300 | 5.0 | — |
柴油/废食用油[ | 75/25 | NiW/SiO2-Al2O3、NiMo/Al2O3 | 340~380 | 5.0 | 2.0~4.0 |
HVGO/菜籽油[ | 90/10、80/20 | NiMo/Al2O3 | 360~395 | 8.0~10.0 | 1.0~2.5 |
SGRO/RSO[ | 70/30 | Mo/Al2O3、NiMo/Al2O3-SAPO-11 | 350~380 | 4.0~7.0 | 1.0~1.5 |
1 | Internantional Energy Agency. CO2 emissions in 2022[R/OL]. . |
2 | ZACHARY B, CARRIE D. A low-carbon future in the US depends on decarbonizing petroleun refineries[R]. World Resources Institude, 2021-10-21. |
3 | HEPBURN Cameron, ADLEN Ella, BEDDINGTON John, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97. |
4 | 舒玉美,史成香,潘伦,等. 生物基喷气燃料的生产及应用进展[J]. 石油炼制与化工,2021,52(10),88-93. |
SHU Yumei, SHI Chengxiang, PAN Lun, et al. Progress in production and application of biomass-based jet fuel[J]. Petroleum Processing and Petrochemicals, 2021,52(10):88-93. | |
5 | SWIDERSKI Erwin, STENGEL Benjamin, PINKERT Fabian, et al. Influence of e-fuels on flame structures and combustion processes of large diesel engines[J]. MTZ Worldwide, 2022, 83(5): 54-61. |
6 | HUNICZ Jacek, MIKULSKI Maciej, SHUKLA Pravesh Chandra, et al. Partially premixed combustion of hydrotreated vegetable oil in a diesel engine: Sensitivity to boost and exhaust gas recirculation[J]. Fuel, 2022, 307: 121910. |
7 | ESTEVEZ Rafael, Laura AGUADO-DEBLAS, LÓPEZ-TENLLADO Francisco J, et al. Biodiesel is dead: Long life to advanced biofuels—A comprehensive critical review[J]. Energies, 2022, 15(9): 3173. |
8 | TAN Kok Tat, Gaik Tin ANG. Recent trends and advances in glycerol-free biodiesel production[M]//Advanced Bioprocessing for Alternative Fuels, Biobased Chemicals, and Bioproducts. Amsterdam: Elsevier, 2019: 153-164. |
9 | SAKDASRI Winatta, KOMINTARACHAT Cholada, SAWANGKEAW Ruengwit, et al. A review of supercritical technologies for lipid-based biofuels production: The glycerol-free processes[J]. Engineering Journal, 2021, 25(2): 1-14. |
10 | VISIOLI Luiz Jardel, TRENTINI Caroline Portilho, DE CASTILHOS Fernanda, et al. Esters production in continuous reactor from macauba pulp oil using methyl acetate in pressurized conditions[J]. The Journal of Supercritical Fluids, 2018, 140: 238-247. |
11 | DHAWAN Manali S, BARTON Scott Calabrese, YADAV Ganapati D. Interesterification of triglycerides with methyl acetate for the co-production biodiesel and triacetin using hydrotalcite as a heterogenous base catalyst[J]. Catalysis Today, 2021, 375: 101-111. |
12 | MAHFUD Mahfud, ANSORI Ansori. Box-behnken design for optimization on biodiesel production from palm oil and methyl acetate using ultrasound assisted interesterification method[J]. Periodica Polytechnica Chemical Engineering, 2021, 66(1): 30-42. |
13 | QUINTANA-GÓMEZ L, LADERO M, CALVO L. Enzymatic production of biodiesel from alperujo oil in supercritical CO2 [J]. The Journal of Supercritical Fluids, 2021, 171: 105184. |
14 | RYMS M, LEWANDOWSKI W, JANUSZEWICZ K, et al. Methods of liquid biofuel production—The biodiesel example[J]. Proc. ECOpole, 2013,20(10):112. |
15 | ESAN Akintomiwa O, OLABEMIWO Ojeyemi M, SMITH Siwaporn M, et al. A concise review on alternative route of biodiesel production via interesterification of different feedstocks[J]. International Journal of Energy Research, 2021, 45(9): 12614-12637. |
16 | KHOUNANI Zahra, Homa HOSSEINZADEH-BANDBAFHA, MOUSTAKAS Konstantinos, et al. Environmental life cycle assessment of different biorefinery platforms valorizing olive wastes to biofuel, phosphate salts, natural antioxidant, and an oxygenated fuel additive (triacetin)[J]. Journal of Cleaner Production, 2021, 278: 123916. |
17 | LENG Lijian, LI Wenyan, LI Hailong, et al. Cold flow properties of biodiesel and the improvement methods: A review[J]. Energy & Fuels, 2020, 34(9): 10364-10383. |
18 | RAO Venkateswara P. Role of Triacetin additive in the performance of single cylinder DI diesel engine with COME biodiesel[J]. International Journal of Advanced Engineering Research and Science, 2018, 5(9): 253-260. |
19 | ESAN Akintomiwa Olumide, ADEYEMI Ayodele Dorcas, GANESAN Shangeetha. A review on the recent application of dimethyl carbonate in sustainable biodiesel production[J]. Journal of Cleaner Production, 2020, 257: 120561. |
20 | MEDRANO-GARCÍA J D, JAVALOYES-ANTÓN J, VÁZQUEZ D, et al. Alternative carbon dioxide utilization in dimethyl carbonate synthesis and comparison with current technologies[J]. Journal of CO2 Utilization, 2021, 45: 101436. |
21 | DHAWAN Manali S, YADAV Ganapati D. Insight into a catalytic process for simultaneous production of biodiesel and glycerol carbonate from triglycerides[J]. Catalysis Today, 2018, 309: 161-171. |
22 | PRADHAN Gitanjali, SHARMA Yogesh Chandra. Green synthesis of glycerol carbonate by transesterification of bio glycerol with dimethyl carbonate over Mg/ZnO: A highly efficient heterogeneous catalyst[J]. Fuel, 2021, 284: 118966. |
23 | PANADARE D C, RATHOD V K. Microwave assisted enzymatic synthesis of biodiesel with waste cooking oil and dimethyl carbonate[J]. Journal of Molecular Catalysis B: Enzymatic, 2016, 133: S518-S524. |
24 | FAN Pei, WANG Jiayan, XING Shiyou, et al. Synthesis of glycerol-free biodiesel with dimethyl carbonate over sulfonated imidazolium ionic liquid[J]. Energy & Fuels, 2017, 31(4): 4090-4095. |
25 | AL-SAADI Luma Sh, Valentine C EZE, HARVEY Adam P. Techno-economic analysis of processes for biodiesel production with integrated co-production of higher added value products from glycerol[J]. Biofuels, 2022, 13(4): 489-496. |
26 | PANCHAL Balaji, ZHU Zheng, QIN Shenjun, et al. The Current state applications of ethyl carbonate with ionic liquid in sustainable biodiesel production: A review[J]. Renewable Energy, 2022, 181: 341-354. |
27 | LUNA D, BAUTISTA F M, CABALLERO V, et al. Method for producing biodiesel using porcine pancreatic lipase as an enzymatic catalyst: WO2008009772A1[P]. 2008-01-24. |
28 | LUNA Carlos, SANCHO Enrique, LUNA Diego, et al. Biofuel that keeps glycerol as monoglyceride by 1,3-selective ethanolysis with pig pancreatic lipase covalently immobilized on AlPO4 support[J]. Energies, 2013, 6(8): 3879-3900. |
29 | PARYANTO Imam, PRAKOSO Tirto, SUYONO Eko Agus, et al. Determination of the upper limit of monoglyceride content in biodiesel for B30 implementation based on the measurement of the precipitate in a biodiesel-petrodiesel fuel blend (BXX)[J]. Fuel, 2019, 258: 116104. |
30 | Fevzi YAŞAR. Comparision of fuel properties of biodiesel fuels produced from different oils to determine the most suitable feedstock type[J]. Fuel, 2020, 264: 116817. |
31 | LUNA Carlos, Victoria GASCÓN-PÉREZ, LÓPEZ-TENLLADO Francisco J, et al. Enzymatic production of ecodiesel by using a commercial lipase CALB, immobilized by physical adsorption on mesoporous organosilica materials[J]. Catalysts, 2021, 11(11): 1350. |
32 | CALERO Juan, CUMPLIDO Gema, LUNA Diego, et al. Production of a biofuel that keeps the glycerol as a monoglyceride by using supported KF as heterogeneous catalyst[J]. Energies, 2014, 7(6): 3764-3780. |
33 | CALERO Juan, LUNA Diego, LUNA Carlos, et al. Optimization by response surface methodology of the reaction conditions in 1, 3-selective transesterification of sunflower oil, by using CaO as heterogeneous catalyst[J]. Molecular Catalysis, 2020, 484: 110804. |
34 | HURTADO Beatriz, POSADILLO Alejandro, LUNA Diego, et al. Synthesis, performance and emission quality assessment of ecodiesel from castor oil in diesel/biofuel/alcohol triple blends in a diesel engine[J]. Catalysts, 2019, 9(1): 40. |
35 | 吴石亮. 生物质基多元醇醚含氧燃料制备及燃烧特性研究[D]. 南京: 东南大学, 2018. |
WU Shiliang. Study on preparation and combustion characteristics of biomass-based polyol ether oxygenated fuel[D]. Nanjing: Southeast University, 2018. | |
36 | OSORIO-GONZÁLEZ Carlos S, Natali GÓMEZ-FALCON, Fabiola SANDOVAL-SALAS, et al. Production of biodiesel from castor oil: A review[J]. Energies, 2020, 13(10): 2467. |
37 | PACHECO Gonçalo, SILVA André, Mário COSTA. Single-droplet combustion of jet A-1, hydroprocessed vegetable oil, and their blends in a drop-tube furnace[J]. Energy & Fuels, 2021, 35(9): 7232-7241. |
38 | HONGLOI Nitchakul, PRAPAINAINAR Paweena, PRAPAINAINAR Chaiwat. Review of green diesel production from fatty acid deoxygenation over Ni-based catalysts[J]. Molecular Catalysis, 2022, 523: 111696. |
39 | KHAN Shamshad, NAUSHAD M, IQBAL Jibran, et al. Challenges and perspectives on innovative technologies for biofuel production and sustainable environmental management[J]. Fuel, 2022, 325: 124845. |
40 | LEE Xin Jiat, Hwai Chyuan ONG, GAN Yong yang, et al. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production[J]. Energy Conversion and Management, 2020, 210: 112707. |
41 | HAGHIGHAT Manouchehr, MAJIDIAN Nasrollah, HALLAJISANI Ahmad, et al. Production of bio-oil from sewage sludge: A review on the thermal and catalytic conversion by pyrolysis[J]. Sustainable Energy Technologies and Assessments, 2020, 42: 100870. |
42 | PANCHASARA Heena, ASHWATH Nanjappa. Effects of pyrolysis bio-oils on fuel atomisation—A review[J]. Energies, 2021, 14(4): 794. |
43 | CORTEZ Luís, FRANCO Telma Teixeira, Gustavo VALENÇA, et al. Perspective use of fast pyrolysis bio-oil (FPBO) in maritime transport: The case of Brazil[J]. Energies, 2021, 14(16): 4779. |
44 | SHIMADA Iori, KATO Shin, HIRAZAWA Naoki, et al. Deoxygenation of triglycerides by catalytic cracking with enhanced hydrogen transfer activity[J]. Industrial & Engineering Chemistry Research, 2017, 56(1): 75-86. |
45 | ABDULKAREEM-ALSULTAN G, ASIKIN-MIJAN N, MUSTAFA-ALSULTAN G, et al. Efficient deoxygenation of waste cooking oil over Co3O4-La2O3-doped activated carbon for the production of diesel-like fuel[J]. RSC Advances, 2020, 10(9): 4996-5009. |
46 | KAMARUZAMAN Muhammad Fadhli, TAUFIQ-YAP Yun Hin, DERAWI Darfizzi. Green diesel production from palm fatty acid distillate over SBA-15-supported nickel, cobalt, and nickel/cobalt catalysts[J]. Biomass and Bioenergy, 2020, 134: 105476. |
47 | YU Cong, YU Shitao, LI Lu. Upgraded methyl oleate to diesel-like hydrocarbons through selective hydrodeoxygenation over Mo-based catalyst[J]. Fuel, 2022, 308: 122038. |
48 | BAHARUDIN Khairul Basyar, ABDULLAH Nurulhuda, TAUFIQ-YAP Yun Hin, et al. Renewable diesel via solventless and hydrogen-free catalytic deoxygenation of palm fatty acid distillate[J]. Journal of Cleaner Production, 2020, 274: 122850. |
49 | PATTANAIK Bhabani Prasanna, MISRA Rahul Dev. Effect of reaction pathway and operating parameters on the deoxygenation of vegetable oils to produce diesel range hydrocarbon fuels: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 545-557. |
50 | WANG Wenbo, LUO Zhongyang, LI Simin, et al. Effects of the controllable mesostructure of nano-sized ZSM-5 on the co-cracking of phenolic bio-oil model compounds and ethanol[J]. Catalysis Science & Technology, 2019, 9(13): 3525-3536. |
51 | KASSA DADA Tewodros, ISLAM Md Anwarul, KUMAR Ravinder, et al. Catalytic co-pyrolysis of ironbark and waste cooking oil using strontium oxide-modified Y-zeolite for high-quality bio-oil production[J]. Chemical Engineering Journal, 2022, 450: 138448. |
52 | TRIANTAFYLLIDIS Kostas S, ILIOPOULOU Eleni F, ANTONAKOU Eleni V, et al. Hydrothermally stable mesoporous aluminosilicates (MSU-S) assembled from zeolite seeds as catalysts for biomass pyrolysis[J]. Microporous and Mesoporous Materials, 2007, 99(1/2): 132-139. |
53 | LU Changbo, YAO Jianzhong, LIN Weigang, et al. Study on biomass catalytic pyrolysis for production of bio-gasoline by on-line FTIR[J]. Chinese Chemical Letters, 2007, 18(4): 445-448. |
54 | 李凝, 芦超, 尹跃华, 等. M x O y -Al2O3复合氧化物在生物质油催化裂化中的催化性能[J]. 材料导报, 2016, 30(8):76-79. |
LI Ning, LU Chao, YIN Yuehua, et al. Catalytic performances of M x Oy-Al2O3 composite oxides for catalyzed cracking of biomass oil[J]. Materials Review, 2016, 30(8):76-79. | |
55 | ZHANG Xinghua, WANG Tiejun, MA Longlong, et al. Production of cyclohexane from lignin degradation compounds over Ni/ZrO2-SiO2 catalysts[J]. Applied Energy, 2013, 112: 533-538. |
56 | 李凝, 卢超, 刘薛恩, 等. ZrO2负载量对ZrO2-脱铝沸石在生物质油催化裂化中的性能影响[J]. 化学研究与应用, 2016, 28(10):1479-1483. |
LI Ning, LU Chao, Liu Xueen, et al. Effect of ZrO2 loading on the performance of ZrO2-dealuminated zeolite in catalytic cracking of biomass oil[J]. Chemical Research and Application, 2016, 28(10):1479-1483. | |
57 | JIRAROJ Duangkamon, JIRARATTANAPOCHAI Orhathai, ANUTRASAKDA Wipark, et al. Selective decarboxylation of biobased fatty acids using a Ni-FSM-16 catalyst[J]. Applied Catalysis B: Environmental, 2021, 291: 120050. |
58 | ASIKIN-MIJAN N, ABDULKAREEM-ALSULTAN G, MASTULI M S, et al. Single-step catalytic deoxygenation-cracking of tung oil to bio-jet fuel over CoW/silica-alumina catalysts[J]. Fuel, 2022, 325: 124917. |
59 | 章国栋. 熔盐裂解油脂制备生物燃料[D]. 杭州: 浙江工业大学, 2014. |
ZHANG Guodong. Preparation of biofuels by cracking oils in molten salt[D]. Hangzhou: Zhejiang University of Technology, 2014. | |
60 | 徐建忠. 熔融碱催化裂化小桐子油的试验研究[D]. 昆明: 昆明理工大学, 2019. |
XU Jianzhong. Experimental study on catalytic cracking of Jatropha curcas oil with molten alkali[D]. Kunming: Kunming University of Science and Technology, 2019. | |
61 | DOUVARTZIDES Savvas L, CHARISIOU Nikolaos D, PAPAGERIDIS Kyriakos N, et al. Green diesel: Biomass feedstocks, production technologies, catalytic research, fuel properties and performance in compression ignition internal combustion engines[J]. Energies, 2019, 12(5): 809. |
62 | VERIANSYAH Bambang, HAN Jae Young, KIM Seok Ki, et al. Production of renewable diesel by hydroprocessing of soybean oil: Effect of catalysts[J]. Fuel, 2012, 94: 578-585. |
63 | Martin HÁJEK, Aleš VÁVRA, DE PAZ CARMONA Héctor, et al. The catalysed transformation of vegetable oils or animal fats to biofuels and bio-lubricants: A review[J]. Catalysts, 2021, 11(9): 1118. |
64 | DE PAZ CARMONA Héctor, AKHMETZYANOVA Uliana, Zdeněk TIŠLER, et al. Hydrotreating atmospheric gasoil and co-processing with rapeseed oil using supported Ni-Mo and Co-Mo carbide catalysts[J]. Fuel, 2020, 268: 117363. |
65 | HACHEMI Imane, KUMAR Narendra, Päivi MÄKI-ARVELA, et al. Sulfur-free Ni catalyst for production of green diesel by hydrodeoxygenation[J]. Journal of Catalysis, 2017, 347: 205-221. |
66 | CHEN Jinlei, ZHU Yongfeng, LI Wenbin, et al. Production of diesel-like hydrocarbons via hydrodeoxygenation of palmitic acid over Ni/TS-1 catalyst[J]. Biomass and Bioenergy, 2021, 149: 106081. |
67 | CABRERA Eduardo, DE SOUSA João M Melo. Use of sustainable fuels in aviation—A review[J]. Energies, 2022, 15(7): 2440. |
68 | WU Le, WANG Yuqi, ZHENG Lan, et al. Design and optimization of bio-oil co-processing with vacuum gas oil in a refinery[J]. Energy Conversion and Management, 2019, 195: 620-629. |
69 | 吴乐, 王竞, 王玉琪, 等. 生物质油与蜡油在FCC装置共炼的多目标优化[J]. 化工学报, 2020, 71(5): 2182-2189. |
WU Le, WANG Jing, WANG Yuqi, et al. Multi-objective optimization of co-processing of bio-oil and vacuum gas oil in FCC[J]. CIESC Journal, 2020, 71(5): 2182-2189. | |
70 | Mustafa AL-SABAWI, CHEN Jinwen, Siauw NG. Fluid catalytic cracking of biomass-derived oils and their blends with petroleum feedstocks: A review[J]. Energy & Fuels, 2012, 26(9): 5355-5372. |
71 | BEZERGIANNI Stella, DAGONIKOU Vasiliki, SKLARI Stella. The suspending role of H2O and CO on catalytic hydrotreatment of gas-oil; myth or reality?[J]. Fuel Processing Technology, 2016, 144: 20-26. |
72 | IMAI Hiroyuki, KIMURA Toshiyuki, TERASAKA Kazusa, et al. Hydroconversion of fatty acid derivative over supported Ni-Mo catalysts under low hydrogen pressure[J]. Catalysis Today, 2018, 303: 185-190. |
73 | David KUBIČKA, Jan HORÁČEK. Deactivation of HDS catalysts in deoxygenation of vegetable oils[J]. Applied Catalysis A: General, 2011, 394(1/2): 9-17. |
74 | H De Paz CARMONA, ALFARO O de la Torre, BRITO ALAYÓN A, et al. Co-processing of straight Run gas oil with used cooking oil and animal fats[J]. Fuel, 2019, 254: 115583. |
75 | BEZERGIANNI Stella, DIMITRIADIS Athanasios, MELETIDIS Georgios. Effectiveness of CoMo and NiMo catalysts on co-hydroprocessing of heavy atmospheric gas oil-waste cooking oil mixtures[J]. Fuel, 2014, 125: 129-136. |
76 | Satyarthi JK, CHIRANJEEVI T, Gokak DT, et al. Studies on co-processing of jatropha oil with diesel fraction in hydrodesulfurization[J]. Fuel Processing Technology, 2014, 118: 180-186. |
77 | RANA Bharat S, KUMAR Rohit, TIWARI Rashmi, et al. Transportation fuels from co-processing of waste vegetable oil and gas oil mixtures[J]. Biomass and Bioenergy, 2013, 56: 43-52. |
78 | CHEN Jinwen, FAROOQI Hena, FAIRBRIDGE Craig. Experimental study on co-hydroprocessing canola oil and heavy vacuum gas oil blends[J]. Energy & Fuels, 2013, 27(6): 3306-3315. |
79 | VLASOVA E N, PORSIN A A, ALEKSANDROV P V, et al. Co-hydroprocessing of straight-run gasoil-rapeseed oil mixture over stacked bed Mo/Al2O3+NiMo/Al2O3-SAPO-11 catalysts[J]. Fuel, 2021, 285: 119504. |
80 | DE PAZ CARMONA Héctor, Eliška SVOBODOVÁ, Zdeněk TIŠLER, et al. Hydrotreating of atmospheric gas oil and co-processing with rapeseed oil using sulfur-free PMoC x /Al2O3 catalysts[J]. ACS Omega, 2021, 6(11): 7680-7692. |
81 | DE PAZ CARMONA Héctor, Jan HORÁČEK, Zdeněk TIŠLER, et al. Sulfur free supported MoC x and MoN x catalysts for the hydrotreatment of atmospheric gasoil and its blends with rapeseed oil[J]. Fuel, 2019, 254: 115582. |
82 | 张静瑜, 雷晴宇, 张帅, 等. 生物质油和蜡油在FCC装置共炼过程的碳排放分析和对比[J]. 化学反应工程与工艺, 2021, 37(3):253-258, 280. |
ZHANG Jingyu, LEI Qingyu, ZHANG Shuai, et al. Carbon emission analysis and comparison of co-processing of bio-oil and vacuum gas oil in FCC[J]. Chemical Reaction Engineering and Technology, 2021, 37(3):253-258, 280. | |
83 | 李阳, 史美荣, 沈若莹, 等. 耦合加氢反应动力学和FCC杂质分配作用的生物质油与蜡油共炼过程的操作优化[J]. 石油学报(石油加工), 2022, 38(1):199-207. |
LI Yang, SHI Meirong, SHEN Ruoying, et al. Operational optimization for co-processing of bio-oil and vacuum gas oil integrating hydrogenation reaction kinetics and impurity distributions of FCC[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(1):199-207. | |
84 | SOTELO-BOYÁS R, TREJO-ZÁRRAGA F, HERNÁNDEZ-LOYO F D J. Hydroconversion of triglycerides into green liquid fuels[M]//Hydrogenation. 2012: 338. |
85 | VERDIER S, ALKILDE O F, GABRIELSEN J. Hydroprocessing of renewable feedstocks—Challenges and solutions[EB/OL]. . |
86 | VÁSQUEZ Maria Cecilia, SILVA Electo Eduardo, CASTILLO Edgar Fernando. Hydrotreatment of vegetable oils: A review of the technologies and its developments for jet biofuel production[J]. Biomass and Bioenergy, 2017, 105: 197-206. |
87 | 中国石化石油化工科学研究院. 国内首套生物喷气燃料加氢装置一次开车成功[J].石油炼制与化工,2022,53(9):16. |
SINOPEC Research Institute of Petroleum Processing. The first domestic bio-jet fuel hydrogenation unit has been successfully launched[J]. Petroleum Processing and Petrochemicals, 2022, 53(9): 16. | |
88 | Kok Siew NG, FAROOQ Danial, YANG Aidong. Global biorenewable development strategies for sustainable aviation fuel production[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111502. |
89 | Antonio ARGUELLES-ARGUELLES, AMEZCUA-ALLIERI Myriam Adela, RAMÍREZ-VERDUZCO Luis Felipe. Life cycle assessment of green diesel production by hydrodeoxygenation of palm oil[J]. Frontiers in Energy Research, 2021, 9: 296. |
[1] | HUANG Sheng, YANG Zhenli, LI Zhenyu. Analysis of optimization path of developing China's hydrogen industry [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 882-893. |
[2] | YANG Mengru, PENG Qin, CHANG Yulong, QIU Shuxing, ZHANG Jianbo, JIANG Xia. Research progress of carbon emission reduction technology with biochar replacing pulverized coal/coke for blast furnace ironmaking [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 490-500. |
[3] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[4] | WU Ya, ZHAO Dan, FANG Rongmiao, LI Jingyao, CHANG Nana, DU Chunbao, WANG Wenzhen, SHI Jun. Research progress on highly efficient demulsifiers for complex crude oil emulsions and their applications [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4398-4413. |
[5] | ZHENG Mengqi, WANG Chengye, WANG Yan, WANG Wei, YUAN Shoujun, HU Zhenhu, HE Chunhua, WANG Jie, MEI Hong. Application and prospect of algal-bacterial symbiosis technology in zero liquid discharge of industrial wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4424-4431. |
[6] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[7] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[8] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
[9] | WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545. |
[10] | WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665. |
[11] | LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916. |
[12] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[13] | YANG Ziqiang, LI Fenghai, GUO Weijie, MA Mingjie, ZHAO Wei. Review on phosphorus migration and transformation during municipal sewage sludge heat treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2081-2090. |
[14] | XING Xianjun, LUO Tian, BU Yuzheng, MA Peiyong. Preparation of biochar from walnut shells activated by H3PO4 and its application in Cr(Ⅵ) adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1527-1539. |
[15] | CHEN Chongming, ZENG Siming, LUO Xiaona, SONG Guosheng, HAN Zhongge, YU Jinxing, SUN Nannan. Preparation and performance of carbon supported potassium-based CO2 adsorbent derived from hyper-cross linked polymers [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1540-1550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |