Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (5): 2343-2353.DOI: 10.16085/j.issn.1000-6613.2023-2128
• Clean and efficient utilization of fossil energy • Previous Articles
WU Da1,2(), JIANG Shujiao1(), WEI Qiang2, YUAN Shenghua1, YANG Gang1, ZHANG Cheng1
Received:
2023-12-01
Revised:
2024-04-25
Online:
2024-06-15
Published:
2024-05-15
Contact:
JIANG Shujiao
吴达1,2(), 蒋淑娇1(), 魏强2, 袁胜华1, 杨刚1, 张成1
通讯作者:
蒋淑娇
作者简介:
吴达(1997—),男,硕士研究生,研究方向为固定床渣油加氢催化剂。E-mail:tengdapro@163.com。
CLC Number:
WU Da, JIANG Shujiao, WEI Qiang, YUAN Shenghua, YANG Gang, ZHANG Cheng. Research progress on efficient utilization technology of residue in energy transition[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2343-2353.
吴达, 蒋淑娇, 魏强, 袁胜华, 杨刚, 张成. 能源转型中渣油高效利用技术的研究进展[J]. 化工进展, 2024, 43(5): 2343-2353.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-2128
项目 | RDS/VRDS | RCD Unionfining | Residfining | 渣油加氢处理成套技术(SRHT) | 渣油加氢处理技术(RHT) |
---|---|---|---|---|---|
代表公司 | CLG | UOP | Exxon | 中国石化 | 中国石化 |
反应温度/℃ | 350~430 | 350~450 | 350~420 | 350~427 | 350~420 |
反应压力/MPa | 12~18 | 10~18 | 13~16 | 13~16 | 13~18 |
体积空速/h-1 | 0.2~0.5 | 0.2~0.8 | 0.2~0.8 | 0.2~0.7 | 0.2~0.7 |
化学氢耗/m3·m-3 | 187 | 130 | 190 | 150~187 | — |
转化率/% | 31 | 20~30 | 20~50 | 20~50 | 20~50 |
脱金属率/% | 92.0 | 78.3 | 72.5 | 83.7 | 92.4 |
脱硫率/% | 94.5 | 92.0 | 81.6 | 92.8 | 92.1 |
脱氮率/% | 70.0 | 40 | 60.0~70.0 | 72.8 | 58.8 |
脱残炭率/% | 50.0~60.0 | 59.3 | 56.5 | 67.1 | 62.7 |
项目 | RDS/VRDS | RCD Unionfining | Residfining | 渣油加氢处理成套技术(SRHT) | 渣油加氢处理技术(RHT) |
---|---|---|---|---|---|
代表公司 | CLG | UOP | Exxon | 中国石化 | 中国石化 |
反应温度/℃ | 350~430 | 350~450 | 350~420 | 350~427 | 350~420 |
反应压力/MPa | 12~18 | 10~18 | 13~16 | 13~16 | 13~18 |
体积空速/h-1 | 0.2~0.5 | 0.2~0.8 | 0.2~0.8 | 0.2~0.7 | 0.2~0.7 |
化学氢耗/m3·m-3 | 187 | 130 | 190 | 150~187 | — |
转化率/% | 31 | 20~30 | 20~50 | 20~50 | 20~50 |
脱金属率/% | 92.0 | 78.3 | 72.5 | 83.7 | 92.4 |
脱硫率/% | 94.5 | 92.0 | 81.6 | 92.8 | 92.1 |
脱氮率/% | 70.0 | 40 | 60.0~70.0 | 72.8 | 58.8 |
脱残炭率/% | 50.0~60.0 | 59.3 | 56.5 | 67.1 | 62.7 |
项目 | H-Oil | T-Star | LC-Fining | 沸腾床渣油加氢成套技术 (STRONG) | 劣质重油全返混沸腾床加氢 (EUU) |
---|---|---|---|---|---|
代表公司 | AXENS | AXENS | CLG | 中国石化 | 上海新佑能源 |
反应温度/℃ | 415~440 | 360~380 | 400~450 | 380~450 | 200~500 |
反应压力/MPa | 16.8~21 | 12.5~13.5 | 11~20 | 8~18 | 5~25 |
体积空速/h-1 | 0.4~1.3 | — | — | — | 0.8~1.0 |
化学氢耗/m3·m-3 | 130~300 | — | 135~300 | — | — |
转化率/% | 45~85 | 20~60 | 55~80 | 40~90 | ≥90 |
脱金属率/% | 65~90 | — | 65~88 | 62~90 | ≥90 |
脱硫率/% | 62~82 | 93~99 | 60~85 | 50~98 | ≥90 |
脱氮率/% | 25~45 | 40~85 | — | 30~70 | ≥80 |
脱残炭率/% | 45~75 | — | 40~70 | — | ≥90 |
项目 | H-Oil | T-Star | LC-Fining | 沸腾床渣油加氢成套技术 (STRONG) | 劣质重油全返混沸腾床加氢 (EUU) |
---|---|---|---|---|---|
代表公司 | AXENS | AXENS | CLG | 中国石化 | 上海新佑能源 |
反应温度/℃ | 415~440 | 360~380 | 400~450 | 380~450 | 200~500 |
反应压力/MPa | 16.8~21 | 12.5~13.5 | 11~20 | 8~18 | 5~25 |
体积空速/h-1 | 0.4~1.3 | — | — | — | 0.8~1.0 |
化学氢耗/m3·m-3 | 130~300 | — | 135~300 | — | — |
转化率/% | 45~85 | 20~60 | 55~80 | 40~90 | ≥90 |
脱金属率/% | 65~90 | — | 65~88 | 62~90 | ≥90 |
脱硫率/% | 62~82 | 93~99 | 60~85 | 50~98 | ≥90 |
脱氮率/% | 25~45 | 40~85 | — | 30~70 | ≥80 |
脱残炭率/% | 45~75 | — | 40~70 | — | ≥90 |
项目 | Uniflex | 悬浮床加氢裂化技术(VCC) | EST | HDH-PLUS | 超级悬浮床(MCT) | 重质油悬浮床加氢技术(UPC) |
---|---|---|---|---|---|---|
代表公司 | UOP | KBR | ENI | PDVSA | 三聚环保 | 中国石油 |
反应温度/℃ | 430~460 | 440~470 | 400~425 | 440~470 | 430~460 | 200~500 |
反应压力/MPa | 12.7~14.1 | 18~23 | 16~20 | 17~20 | 18~23 | 9~13 |
体积空速/h-1 | 0.3~1.0 | 0.3~1.0 | 0.3~1.0 | — | 0.3~1.0 | 0.8~1.0 |
催化剂 | 铁系粉末型 | 铁系粉末型 | 钼系油溶性 | 粉末型 | 复合粉末型 | 水溶性多金属催化剂 |
转化率/% | >90 | 85~95 | >97 | >90 | >90 | 80~96 |
未转化油/% | <10 | <5 | 2.5~3.8 | <10 | >5 | — |
项目 | Uniflex | 悬浮床加氢裂化技术(VCC) | EST | HDH-PLUS | 超级悬浮床(MCT) | 重质油悬浮床加氢技术(UPC) |
---|---|---|---|---|---|---|
代表公司 | UOP | KBR | ENI | PDVSA | 三聚环保 | 中国石油 |
反应温度/℃ | 430~460 | 440~470 | 400~425 | 440~470 | 430~460 | 200~500 |
反应压力/MPa | 12.7~14.1 | 18~23 | 16~20 | 17~20 | 18~23 | 9~13 |
体积空速/h-1 | 0.3~1.0 | 0.3~1.0 | 0.3~1.0 | — | 0.3~1.0 | 0.8~1.0 |
催化剂 | 铁系粉末型 | 铁系粉末型 | 钼系油溶性 | 粉末型 | 复合粉末型 | 水溶性多金属催化剂 |
转化率/% | >90 | 85~95 | >97 | >90 | >90 | 80~96 |
未转化油/% | <10 | <5 | 2.5~3.8 | <10 | >5 | — |
催化剂牌号 | 用途 | 工业应用 |
---|---|---|
FEM-10 | 微球形渣油加氢脱金属剂 | 金陵石化50kt/a沸腾床加氢示范装置 |
FES-30 | 微球形渣油加氢脱硫及转化催化剂 | 金陵石化50kt/a沸腾床加氢示范装置 |
FEC-10 | 微球形煤焦油加氢催化剂 | 陕西精益500kt/a煤焦油沸腾床加氢装置 |
FEA-10 | 微球形煤基混合中间馏分油加氢催化剂 | — |
FET-10 | 条形渣油加氢催化剂 | — |
FFT-1B | 条形煤液化油加氢催化剂 | 鄂尔多斯煤制油加氢稳定单元 |
催化剂牌号 | 用途 | 工业应用 |
---|---|---|
FEM-10 | 微球形渣油加氢脱金属剂 | 金陵石化50kt/a沸腾床加氢示范装置 |
FES-30 | 微球形渣油加氢脱硫及转化催化剂 | 金陵石化50kt/a沸腾床加氢示范装置 |
FEC-10 | 微球形煤焦油加氢催化剂 | 陕西精益500kt/a煤焦油沸腾床加氢装置 |
FEA-10 | 微球形煤基混合中间馏分油加氢催化剂 | — |
FET-10 | 条形渣油加氢催化剂 | — |
FFT-1B | 条形煤液化油加氢催化剂 | 鄂尔多斯煤制油加氢稳定单元 |
1 | 费华伟, 王婧, 高振宇. 2022年中国炼油工业发展状况及近期展望[J]. 国际石油经济, 2023, 31(4): 53-58. |
FEI Huawei, WANG Jing, GAO Zhenyu. Review and near-term outlook of China’s refining industry in 2022[J]. International Petroleum Economics, 2023, 31(4): 53-58. | |
2 | 王德亮, 周志茂, 林梦蕾, 等. 中国炼油转型化工现状及发展约束因素的思考[J]. 化工进展, 2021, 40(10): 5854-5860. |
WANG Deliang, ZHOU Zhimao, LIN Menglei, et al. Status and thinking of development constraints of refining to chemical transformation in China[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5854-5860. | |
3 | WEI Xianyong, BAI Xiang, MA Fengyun, et al. Advances in catalytic hydroconversion of typical heavy carbon resources under mild conditions[J]. Energy & Fuels, 2023, 37(17): 12570-12588. |
4 | 李雪静, 乔明, 魏寿祥, 等. 劣质重油加工技术进展与发展趋势[J]. 石化技术与应用, 2019, 37(1): 1-8. |
LI Xuejing, QIAO Ming, WEI Shouxiang, et al. Technical progress and development trend of inferior heavy oil processing[J]. Petrochemical Technology & Application, 2019, 37(1): 1-8. | |
5 | 廖有贵, 薛金召, 肖雪洋, 等. 固定床渣油加氢处理技术应用现状及进展[J]. 石油化工, 2018, 47(9): 1020-1030. |
LIAO Yougui, XUE Jinzhao, XIAO Xueyang, et al. Application situation and progress of fixed-bed residue hydrotreating technology[J]. Petrochemical Technology, 2018, 47(9): 1020-1030. | |
6 | 张甫, 任颖, 杨明, 等. 劣质重油加氢技术的工业应用及发展趋势[J]. 现代化工, 2019, 39(6): 15-20. |
ZHANG Fu, REN Ying, YANG Ming, et al. Industrial application and trend of hydrogenation technology for inferior heavy oil[J]. Modern Chemical Industry, 2019, 39(6): 15-20. | |
7 | 穆海涛, 孙振光. 上流式反应器在VRDS工艺中的应用[J]. 石油炼制与化工, 2004, 35(1): 10-15. |
MU Haitao, SUN Zhenguang. Application of UFR in VRDS process[J]. Petroleum Processing and Petrochemicals, 2004, 35(1): 10-15. | |
8 | 于长旺, 张强, 张鹏. 中化泉州渣油加氢上流式反应器应用总结[J]. 炼油技术与工程, 2019, 49(6): 28-31. |
YU Changwang, ZHANG Qiang, ZHANG Peng. Application summary of upflow reactor for residue hydrogenation unit of Sinochem Quanzhou Petrochemical Company[J]. Petroleum Refinery Engineering, 2019, 49(6): 28-31. | |
9 | 夏恩冬, 吕倩, 王刚, 等. 国内外渣油加氢技术现状与展望[J]. 精细石油化工进展, 2008, 9(8): 42-46. |
XIA Endong, Qian LYU, WANG Gang, et al. Current situation and outlook of residue hydroprocessing technologies at home and abroad[J]. Advances in Fine Petrochemicals, 2008, 9(8): 42-46. | |
10 | 方向晨. 国内外渣油加氢处理技术发展现状及分析[J]. 化工进展, 2011, 30(1): 95-104. |
FANG Xiangchen. Development of residuum hydroprocessing technologies[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 95-104. | |
11 | 孙淑玲, 杨清河, 胡大为, 等. 加工劣质渣油的固定床渣油加氢催化剂的开发及工业应用[J]. 石油炼制与化工, 2018, 49(3): 1-6. |
SUN Shuling, YANG Qinghe, HU Dawei, et al. Development and commercial application of fixed bed hydrotreating catalysts for inferior residues[J]. Petroleum Processing and Petrochemicals, 2018, 49(3): 1-6. | |
12 | 卢德庆, 朱元宝, 辛靖, 等. 渣油固定床加氢系列催化剂级配方案优化研究[J]. 现代化工, 2023, 43(9): 217-221. |
LU Deqing, ZHU Yuanbao, XIN Jing, et al. Optimization study on grading scheme of series catalysts for fixed bed residue hydrogenation[J]. Modern Chemical Industry, 2023, 43(9): 217-221. | |
13 | 刘铁斌. 渣油加氢装置长周期运行优化措施及应用[J]. 炼油技术与工程, 2017, 47(8): 29-32. |
LIU Tiebin. Optimization measures and application of long-term operation of residue hydrotreating unit[J]. Petroleum Refinery Engineering, 2017, 47(8): 29-32. | |
14 | 姜瑞文. 固定床渣油加氢装置长周期运行的技术措施探索与实践[J]. 石油炼制与化工, 2022, 53(5): 58-62. |
JIANG Ruiwen. Exploration and practice of technical measures for long-term operation of fixed-bed residue hydrotreating unit[J]. Petroleum Processing and Petrochemicals, 2022, 53(5): 58-62. | |
15 | 邵志才, 戴立顺, 聂红, 等. 渣油加氢装置高效运行的影响因素及应对措施[J]. 石油炼制与化工, 2018, 49(11): 17-21. |
SHAO Zhicai, DAI Lishun, NIE Hong, et al. Influence factots for high efficient running of VRDS units and solutions[J]. Petroleum Processing and Petrochemicals, 2018, 49(11): 17-21. | |
16 | 李浩, 范传宏, 刘凯祥. 渣油加氢工艺及工程技术探讨[J]. 石油炼制与化工, 2012, 43(6): 31-39. |
LI Hao, FAN Chuanhong, LIU Kaixiang. A discussion on residue hydrogenation process and engineering technology[J]. Petroleum Processing and Petrochemicals, 2012, 43(6): 31-39. | |
17 | 任文坡, 李雪静. 渣油加氢技术应用现状及发展前景[J]. 化工进展, 2013, 32(5): 1006-1013, 1144. |
REN Wenpo, LI Xuejing. Application and development of residuum hydroprocessing technologies[J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1006-1013, 1144. | |
18 | 刘汪辉, 姜来, 刘海涛, 等. STRONG沸腾床示范装置工业应用[J]. 当代化工, 2017, 46(9): 1894-1896, 1901. |
LIU Wanghui, JIANG Lai, LIU Haitao, et al. Industrial application of STRONG ebullated bed demonstration unit[J]. Contemporary Chemical Industry, 2017, 46(9): 1894-1896, 1901. | |
19 | 金浩, 孙晓丹, 吕振辉, 等. FRIPP沸腾床加氢系列催化剂开发与应用[J]. 炼油技术与工程, 2021, 51(8): 57-60. |
JIN Hao, SUN Xiaodan, Zhenhui LYU, et al. Development and application of FRIPP series catalysts for ebullated-bed hydrogenation[J]. Petroleum Refinery Engineering, 2021, 51(8): 57-60. | |
20 | 辛靖, 高杨, 张海洪. 劣质重油沸腾床加氢技术现状及研究进展[J]. 无机盐工业, 2018, 50(6): 6-12. |
XIN Jing, GAO Yang, ZHANG Haihong. Application situation and new advances of ebullated bed hydrocracking technologies for low-grade heavy oil[J]. Inorganic Chemicals Industry, 2018, 50(6): 6-12. | |
21 | YUSUF Abdullahi, AL-HAJRI Rashid S, AL-WAHEIBI Yahya M, et al. Upgrading of Omani heavy oil with bimetallic amphiphilic catalysts[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 45-53. |
22 | 吴青. 悬浮床加氢裂化——劣质重油直接深度高效转化技术[J]. 炼油技术与工程, 2014, 44(2): 1-9. |
WU Qing. Suspended-bed hydrocracking process—A deep high-efficiency conversion process in rapid development for processing low-quality heavy oils[J]. Petroleum Refinery Engineering, 2014, 44(2): 1-9. | |
23 | 昝大鑫. VCC悬浮床加氢裂化技术[J]. 中国石油石化, 2016(S1): 18-19. |
ZAN Daxin. VCC suspended bed hydrocracking technology[J]. China Petrochem, 2016(S1): 18-19. | |
24 | 张庆军, 刘文洁, 王鑫, 等. 国外渣油加氢技术研究进展[J]. 化工进展, 2015, 34(8): 2988-3002. |
ZHANG Qingjun, LIU Wenjie, WANG Xin, et al. Research progress in hydroprocessing technology for imported residuum[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2988-3002. | |
25 | 翟金红, 邱开辉. 悬浮床渣油加氢技术开发与进展[J]. 炼油与化工, 2022, 33(5): 13-15. |
ZHAI Jinhong, QIU Kaihui. Development and progress of suspension bed residue hydrogenation technology[J]. Refining and Chemical Industry, 2022, 33(5): 13-15. | |
26 | 王继乾, 李明, 万道正, 等. 渣油悬浮床加氢裂化尾油化学结构及其裂化性能评价[J]. 石油学报(石油加工), 2006, 22(5): 63-68. |
WANG Jiqian, LI Ming, WAN Daozheng, et al. The chemical structure and cracking ability of residue hydrocracking bottom oil from slurry-bed[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2006, 22(5): 63-68. | |
27 | 穆海涛, 孙启伟, 孙振光. 上流式反应器技术在渣油加氢装置上的应用[J]. 石油炼制与化工, 2001, 32(11): 10-13. |
MU Haitao, SUN Qiwei, SUN Zhenguang. Application of up-flow reactor in residual oil hydrotreating unit[J]. Petroleum Processing and Petrochemicals, 2001, 32(11): 10-13. | |
28 | 赵元生, 赵愉生, 夏恩冬, 等. 上流式反应器用于劣质渣油加氢处理的初步探索[J]. 石油化工, 2016, 45(11): 1363-1368. |
ZHAO Yuansheng, ZHAO Yusheng, XIA Endong, et al. Preliminary study on hydrotreating of inferior residual oil in upflow reactor[J]. Petrochemical Technology, 2016, 45(11): 1363-1368. | |
29 | 杨涛, 刘建锟, 耿新国. 沸腾床-固定床组合渣油加氢处理技术研究[J]. 炼油技术与工程, 2015, 45(5): 24-27. |
YANG Tao, LIU Jiankun, GENG Xinguo. Study on integrated ebullated-bed and fixed-bed residue hydrotreating process[J]. Petroleum Refinery Engineering, 2015, 45(5): 24-27. | |
30 | 孟兆会, 方向晨, 杨涛, 等. 沸腾床与固定床组合工艺加氢处理煤焦油试验研究[J]. 煤炭科学技术, 2015, 43(3): 134-137, 81. |
MENG Zhaohui, FANG Xiangchen, YANG Tao, et al. Experiment study on fluidized bed and fixed bed combined technique hydrogenation to process coal tar[J]. Coal Science and Technology, 2015, 43(3): 134-137, 81. | |
31 | 牛传峰, 崔琰, 戴立顺, 等. 以渣油为原料的化工型加氢-催化裂解双向组合技术研究[J]. 石油炼制与化工, 2021, 52(4): 50-53. |
NIU Chuanfeng, CUI Yan, DAI Lishun, et al. Novel RHT-DCC bi-directional combined process for producing chemical raw materials from residual oil[J]. Petroleum Processing and Petrochemicals, 2021, 52(4): 50-53. | |
32 | 许友好, 戴立顺, 龙军, 等. 多产轻质油的FGO选择性加氢工艺与选择性催化裂化工艺集成技术(IHCC)的研究[J]. 石油炼制与化工, 2011, 42(3): 7-12. |
XU Youhao, DAI Lishun, LONG Jun, et al. Integrated technology(IHCC) of hydrotreating FCC gas oil and highly selective catalytic cracking for maximizing liquid yield[J]. Petroleum Processing and Petrochemicals, 2011, 42(3): 7-12. | |
33 | 樊祥柱, 王永林. 水蒸气处理对渣油加氢催化剂性质的影响[J]. 石化技术与应用, 2006, 24(1): 17-18, 1. |
FAN Xiangzhu, WANG Yonglin. Influence of treating conditions in steam on properties of residuum hydrocracking catalyst[J]. Petrochemical Technology & Application, 2006, 24(1): 17-18, 1. | |
34 | 辛靖, 宋宇, 吕艳艳, 等. 孔结构优化对渣油加氢脱金属剂的影响研究[J]. 无机盐工业, 2022, 54(6): 125-133. |
XIN Jing, SONG Yu, Yanyan LYU, et al. Study on impact of pore structure optimization on demetallization catalysts for fixed bed residue hydrotreating[J]. Inorganic Chemicals Industry, 2022, 54(6): 125-133. | |
35 | 胡大为, 杨清河, 聂红, 等. 活性氧化铝载体的扩孔及改性[J]. 石油炼制与化工, 2004, 35(8): 46-49. |
HU Dawei, YANG Qinghe, NIE Hong, et al. Pore enlarging and modification of alumina carrier[J]. Petroleum Processing and Petrochemicals, 2004, 35(8): 46-49. | |
36 | ZHAO Ruiyu, LU Pingjuan, ZHAO Yuansheng, et al. Effect of phosphorus modification on the acidity, nanostructure of the active phase, and catalytic performance of residue hydrodenitrogenation catalysts[J]. ACS Omega, 2020, 5(30): 19111-19119. |
37 | 隋宝宽, 季洪海, 袁胜华, 等. 磷对加氢脱金属催化剂催化性能及结构的影响[J]. 炼油技术与工程, 2020, 50(5): 37-40, 49. |
SUI Baokuan, JI Honghai, YUAN Shenghua, et al. Effect of phosphorus on the properties of HDM catalysts[J]. Petroleum Refinery Engineering, 2020, 50(5): 37-40, 49. | |
38 | RAYO Patricia, Jorge RAMÍREZ, Pablo TORRES-MANCERA, et al. Hydrodesulfurization and hydrocracking of Maya crude with P-modified NiMo/Al2O3 catalysts[J]. Fuel, 2012, 100: 34-42. |
39 | LI Qingyang, XIAO Zhengting, XIN Hongchuan, et al. Enhancement of hydrotreating activity of oil-soluble CoMo6 heteropolyacid for 4,6-dimethyldibenzothiophene and vacuum residue by controlling sulfurization degree[J]. Chemical Engineering Journal, 2023, 472: 145128. |
40 | 隋宝宽, 王刚, 袁胜华, 等. 三维贯通大孔Al2O3载体及其渣油加氢脱金属催化性能[J]. 燃料化学学报, 2021, 49(8): 1201-1207. |
SUI Baokuan, WANG Gang, YUAN Shenghua, et al. Macroporous Al2O3 with three-dimensionally interconnected structure: Catalytic performance of hydrodemetallization for residue oil[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1201-1207. | |
41 | MAITY S K, ANCHEYTA J, SOBERANIS L, et al. Alumina-titania binary mixed oxide used as support of catalysts for hydrotreating of Maya heavy crude[J]. Applied Catalysis A: General, 2003, 244(1): 141-153. |
42 | 李旭贺, 李洪广, 刘铁斌, 等. 俄油型原料固定床渣油加氢工艺技术分析[J]. 炼油技术与工程, 2022, 52(12): 16-20. |
LI Xuhe, LI Hongguang, LIU Tiebin, et al. Technical analysis of fixed bed residue hydrogenation unit of Russian oil type feed[J]. Petroleum Refinery Engineering, 2022, 52(12): 16-20. | |
43 | 刘铁斌, 李旭贺, 袁胜华. FRIPP新型固定床渣油加氢处理技术研究进展及工业应用[J]. 当代化工, 2023, 52(10): 2453-2456. |
LIU Tiebin, LI Xuhe. YUAN Shenghua. Research progress and industrial applications of FRIPP’s new fixed-bed residue hydroprocessing technology[J]. Contemporary Chemical Industry, 2023, 52(10): 2453-2456. | |
44 | 朱慧红, 茆志伟, 杨涛, 等. 催化剂形貌对沸腾床渣油加氢Ni-Mo/Al2O3催化剂活性位的影响机制[J]. 化工学报, 2021, 72(4): 2076-2085. |
ZHU Huihong, MAO Zhiwei, YANG Tao, et al. Influence mechanism of catalyst morphology on the active sites of Ni-Mo/Al2O3 catalyst for ebullated bed residue hydrogenation[J]. CIESC Journal, 2021, 72(4): 2076-2085. | |
45 | BELLUSSI Giuseppe, RISPOLI Giacomo, LANDONI Alberto, et al. Hydroconversion of heavy residues in slurry reactors: Developments and perspectives[J]. Journal of Catalysis, 2013, 308: 189-200. |
46 | 尚猛. 油溶性催化剂和助剂在渣油悬浮床加氢裂化中的研究[D]. 东营: 中国石油大学(华东), 2010. |
SHANG Meng. Study on oil-soluble catalysts and accessory ingredients in the residue slurry-bed hydrocracking[D]. Dongying: China University of Petroleum, 2010, 2010. | |
47 | MA Yongde, WU Wenquan, ZHANG Jiayin, et al. Slurry-phase hydrocracking of heavy oil with bifunctional catalysts in situ generated from oil-soluble ionic liquid and mixed metal oxide[J]. Industrial & Engineering Chemistry Research, 2023, 62(38): 15459-15468. |
48 | PANARITI N, DEL BIANCO A, DEL PIERO G, et al. Petroleum residue upgrading with dispersed catalysts[J]. Applied Catalysis A: General, 2000, 204(2): 203-213. |
49 | 李璐琪. 油溶性NiMo双金属催化剂体系的构建及其重油转化性能研究[D]. 东营: 中国石油大学(华东), 2021. |
LI Luqi. Study on preparation of oil-soluble NiMo bimetallic catalyst for hydroconversion of heavy oil[D]. Dongying: China University of Petroleum (East China), 2021. | |
50 | KIM Ki-Duk, LEE Yong-Kul. Promotional effect of Co on unsupported MoS2 catalysts for slurry phase hydrocracking of vacuum residue: X-ray absorption fine structure studies[J]. Journal of Catalysis, 2019, 380: 278-288. |
51 | 张莹莹. 催化油浆生产针状焦原料筛选的研究[J]. 炭素技术, 2023, 42(4): 65-68, 72. |
ZHANG Yingying. Study on the choice of raw materials for producing needle coke from catalytic oil slurry[J]. Carbon Techniques, 2023, 42(4): 65-68, 72. | |
52 | 仝玉军, 杨涛, 孙世源, 等. 沸腾床加氢-焦化组合工艺制备低硫石油焦[J]. 石油炼制与化工, 2021, 52(3): 15-20. |
TONG Yujun, YANG Tao, SUN Shiyuan, et al. Combined process of ebullated bed hydrocracking and delayed coking to prepare low sulfur coke[J]. Petroleum Processing and Petrochemicals, 2021, 52(3): 15-20. | |
53 | 程薇. CLG公司在华首套采用沸腾床渣油加氢-溶剂脱沥青(LC-MAX)工艺的装置建成投产[J]. 石油炼制与化工, 2014, 45(12): 100. |
CHENG Wei. CLG’s first plant in China using fluidized bed residue hydrogenation-solvent deasphalting (LC-MAX) process was completed and put into operation[J]. Petroleum Processing and Petrochemicals, 2014, 45(12): 100. | |
54 | 李辉, 韩迈, 王国强, 等. 溶剂脱沥青工艺在重油加工中的应用进展[J]. 炼油技术与工程, 2020, 50(5): 21-25. |
LI Hui, HAN Mai, WANG Guoqiang, et al. Application progress of solvent deasphalting process in heavy oil processing[J]. Petroleum Refinery Engineering, 2020, 50(5): 21-25. | |
55 | 陈月亮, 王佳兵, 尹勇勇, 等. 包覆沥青的制备方法及市场分析[J]. 化工管理, 2023(13): 26-29. |
CHEN Yueliang, WANG Jiabing, YIN Yongyong, et al. Preparation methods and market analysis of coating pitch[J]. Chemical Engineering Management, 2023(13): 26-29. | |
56 | 国家发展改革委, 国家能源局, 工业和信息化部, 等. 国家发展改革委等部门关于促进炼油行业绿色创新高质量发展的指导意见[J]. 中国产经, 2023(22): 8-11. |
National Development and Reform Commission, National Energy Administration, Ministry of Industry and Information Technology, et al. Guiding opinions of the National Development and Reform Commission and other departments on promoting the high-quality development of green innovation in the oil refining industry[J]. Chinese Industry & Economy, 2023(22): 8-11. |
[1] | ZHANG Haixia, ZHU Zhiping, ZHANG Siyuan. Research and application progress of circulating fluidized bed gasification with high-alkaline coal [J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2254-2278. |
[2] | WANG Bing, WANG Lei, HUANG Xinru, YUAN Hongpeng, LAI Xiaojuan, LI Peng. Synthesis and performance test of an acid and alkali resistant high strength resin [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1992-2000. |
[3] | LIU Ruolu, TANG Haibo, HE Feifei, LUO Fengying, WANG Jinge, YANG Na, LI Hongwei, ZHANG Ruiming. Recent research and prospect of liquid organic hydrogen carries technology [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1731-1741. |
[4] | WANG Hongyan, MA Ziran, LI Ge, MA Jing, ZHAO Chunlin, ZHOU Jiali, WANG Lei, PENG Shengpan. Research progress in synergistic catalytic elimination of multiple pollutants in flue gas of coal combustion coupled with renewable fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1783-1795. |
[5] | CHEN Jiayi, GAO Weitao, YIN Yanan, WANG Cheng, OUYANG Hongwu, MAO Zongqiang. Preparation of PEMFC catalysts by electrodeposition [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1796-1809. |
[6] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[7] | LIU Yurong, WANG Xingbao, LI Wenying. Regulation of catalyst acid sites and its effect on the deep hydrogenation performance of anthracene [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1832-1839. |
[8] | GUO Xiaodong, MAO Yujiao, LIU Xiangyang, QIU Li, YU Feng, YAN Xiaoliang. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1840-1850. |
[9] | GAO Fei, LIU Zhisong, PAN Keke, LIU Minmin, DAI Bin, DAN Jianming, YU Feng. Vermiculite-supported FeCe bimetallic catalyst for selective catalytic reduction of NO with CO [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1851-1862. |
[10] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[11] |
ZHANG Pengfei, YAN Zhangyan, REN Liang, ZHAGN Kui, LIANG Jialin, ZHAO Guangle, ZHANG Fanbin, HU Zhihai.
Research progress in the catalytic hydrodealkylation of C |
[12] | GU Xingpeng, MA Hongqin, LIU Jiahao. Modification of Rainey nickel with phosphorus quantum dots and its catalytic hydrodesulfurization performances [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1293-1301. |
[13] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[14] | XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327. |
[15] | LI Weijie, KANG Jincan, ZHANG Chuanming, LIN Lina, LI Changxin, ZHU Hongping. Selective hydrogenation of methyl 3-hydroxypropionate over zirconium-modified Cu/SiO2 catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1328-1341. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |