Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1840-1850.DOI: 10.16085/j.issn.1000-6613.2023-0571
• Industrial catalysis • Previous Articles
GUO Xiaodong1,2(), MAO Yujiao1,2, LIU Xiangyang1,2, QIU Li1,2(), YU Feng1,2, YAN Xiaoliang1,2()
Received:
2023-04-11
Revised:
2023-06-15
Online:
2024-05-13
Published:
2024-04-15
Contact:
QIU Li, YAN Xiaoliang
郭潇东1,2(), 毛玉娇1,2, 刘相洋1,2, 邱丽1,2(), 于峰1,2, 闫晓亮1,2()
通讯作者:
邱丽,闫晓亮
作者简介:
郭潇东(1998—),男,硕士研究生,研究方向为镍基催化剂的设计及甲烷化性能。E-mail:2970988405@qq.com。
基金资助:
CLC Number:
GUO Xiaodong, MAO Yujiao, LIU Xiangyang, QIU Li, YU Feng, YAN Xiaoliang. Effect of oxygen vacancies in Ni/Sm2O3-CeO2/Al2O3 catalyst on CO2 methanation at low temperature[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1840-1850.
郭潇东, 毛玉娇, 刘相洋, 邱丽, 于峰, 闫晓亮. Ni/Sm2O3-CeO2/Al2O3催化剂氧空位对二氧化碳低温甲烷化的影响[J]. 化工进展, 2024, 43(4): 1840-1850.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0571
催化剂 | H2消耗峰/℃ | |||||
---|---|---|---|---|---|---|
ε1 | ε2 | α | β1 | β2 | γ | |
NiO/Sm2O3-CeO2/Al2O3 | — | — | 356 | 468 | 560 | 632 |
NiO/MnO x -Sm2O3-CeO2/Al2O3 | 192 | 262 | 360 | 470 | 570 | 642 |
催化剂 | H2消耗峰/℃ | |||||
---|---|---|---|---|---|---|
ε1 | ε2 | α | β1 | β2 | γ | |
NiO/Sm2O3-CeO2/Al2O3 | — | — | 356 | 468 | 560 | 632 |
NiO/MnO x -Sm2O3-CeO2/Al2O3 | 192 | 262 | 360 | 470 | 570 | 642 |
催化剂 | 反应温度/℃ | 空速/h-1 | CO2转化率/% | CH4选择性/% | 参考文献 |
---|---|---|---|---|---|
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 225 | 15000 | 68 | 100 | 本工作 |
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 250 | 15000 | 87.8 | 100 | 本工作 |
250 | 40000 | 80.5 | 95.8 | [ | |
NiCeAl-RMO | 250 | 15000 | 78.6 | 100% | [ |
350 | 25000 | 54.5 | 100% | [ | |
300 | 3600 | 85.4 | >80% | [ | |
Ni/ZrO2-Al2O3-0.1 | 280 | 48000 | 84.4 | 99.4 | [ |
1%Ru/CeO2 | 300 | 1800 | 86 | 100 | [ |
Co-Al-O | 250 | 5000 | 74 | 99 | [ |
Ni-Mn/γ-Al2O3 | 280 | 12000 | 85 | 99 | [ |
Ni/La-Sm-Ce | 350 | 25000 | 53 | 100 | [ |
300 | 30000 | 88.6 | 99% | [ |
催化剂 | 反应温度/℃ | 空速/h-1 | CO2转化率/% | CH4选择性/% | 参考文献 |
---|---|---|---|---|---|
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 225 | 15000 | 68 | 100 | 本工作 |
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 250 | 15000 | 87.8 | 100 | 本工作 |
250 | 40000 | 80.5 | 95.8 | [ | |
NiCeAl-RMO | 250 | 15000 | 78.6 | 100% | [ |
350 | 25000 | 54.5 | 100% | [ | |
300 | 3600 | 85.4 | >80% | [ | |
Ni/ZrO2-Al2O3-0.1 | 280 | 48000 | 84.4 | 99.4 | [ |
1%Ru/CeO2 | 300 | 1800 | 86 | 100 | [ |
Co-Al-O | 250 | 5000 | 74 | 99 | [ |
Ni-Mn/γ-Al2O3 | 280 | 12000 | 85 | 99 | [ |
Ni/La-Sm-Ce | 350 | 25000 | 53 | 100 | [ |
300 | 30000 | 88.6 | 99% | [ |
催化剂 | 弱碱性位点 /mmol·g-1 | 中等碱性位点 /mmol·g-1 | 强碱性位点 /mmol·g-1 | 总碱度 /mmol·g-1 |
---|---|---|---|---|
Ni/Sm2O3-CeO2/Al2O3 | 0.0081 | 0.0093 | 0.013 | 0.03 |
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 0.013 | 0.015 | 0.021 | 0.049 |
催化剂 | 弱碱性位点 /mmol·g-1 | 中等碱性位点 /mmol·g-1 | 强碱性位点 /mmol·g-1 | 总碱度 /mmol·g-1 |
---|---|---|---|---|
Ni/Sm2O3-CeO2/Al2O3 | 0.0081 | 0.0093 | 0.013 | 0.03 |
Ni/MnO x -Sm2O3-CeO2/Al2O3 | 0.013 | 0.015 | 0.021 | 0.049 |
1 | 刘昌俊, 郭秋婷, 叶静云, 等. 二氧化碳转化催化剂研究进展及相关问题思考[J]. 化工学报, 2016, 67(1): 6-13. |
LIU Changjun, GUO Qiuting, YE Jingyun, et al. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6-13. | |
2 | YAN Xiaoliang, SUN Wei, FAN Liming, et al. Nickel@Siloxene catalytic nanosheets for high-performance CO2 methanation[J]. Nature Communications, 2019, 10: 2608. |
3 | 周程, 南永永, 查飞, 等. 金属有机骨架材料在二氧化碳加氢中的应用[J]. 燃料化学学报, 2021, 49(10): 1444-1457. |
ZHOU Cheng, Yongyong NAN, ZHA Fei, et al. Application of metal-organic frameworks in CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1444-1457. | |
4 | SAEIDI Samrand, NAJARI Sara, HESSEL Volker, et al. Recent advances in CO2 hydrogenation to value-added products—Current challenges and future directions[J]. Progress in Energy and Combustion Science, 2021, 85: 100905. |
5 | YE Runping, LI Qiaohong, GONG Weibo, et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation [J]. Applied Catalysis B: Environmental, 2020, 268: 118474. |
6 | 崔凯凯, 周桂林, 谢红梅. 二氧化碳甲烷化催化剂的研究进展[J]. 化工进展, 2015, 34(3): 724-730, 737. |
CUI Kaikai, ZHOU Guilin, XIE Hongmei. Research progress in CO2 methanation catalysts[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 724-730, 737. | |
7 | WANG Qianqian, CAO Min, FAN Liming, et al. Effects of penta-coordinated Al3+ sites and Ni defective sites on Ni/Al2O3 for CO methanation[J]. AIChE Journal, 2023, 69(5): e17998. |
8 | YAN Xiaoliang, YUAN Chen, BAO Jiehua, et al. A Ni-based catalyst with enhanced Ni-support interaction for highly efficient CO methanation[J]. Catalysis Science & Technology, 2018, 8(14): 3474-3483. |
9 | HAN Rui, XING Shuang, WANG Yang, et al. Two birds with one stone: MgO promoted Ni-CaO as stable and coke-resistant bifunctional materials for integrated CO2 capture and conversion[J]. Separation and Purification Technology, 2023, 307: 122808. |
10 | MA Xiaotong, LI Yingjie, SHI Lei, et al. Fabrication and CO2 capture performance of magnesia-stabilized carbide slag by by-product of biodiesel during calcium looping process[J]. Applied Energy, 2016, 168: 85-95. |
11 | AHMAD Waqar, YOUNIS Muhammad Naeem, SHAWABKEH Reyad, et al. Synthesis of lanthanide series (La, Ce, Pr, Eu & Gd) promoted Ni/γ-Al2O3 catalysts for methanation of CO2 at low temperature under atmospheric pressure[J]. Catalysis Communications, 2017, 100: 121-126. |
12 | BRANCO Joaquim B, BRITO Pedro E, FERREIRA Ana C. Methanation of CO2 over nickel-lanthanide bimetallic oxides supported on silica[J]. Chemical Engineering Journal, 2020, 380: 122465. |
13 | ZHANG Qinwei, XU Ruinian, LIU Ning, et al. In situ Ce-doped catalyst derived from NiCeAl-LDHs with enhanced low-temperature performance for CO2 methanation[J]. Applied Surface Science, 2022, 579: 152204. |
14 | ZHU Minghui, TIAN Pengfei, CAO Xinyu, et al. Vacancy engineering of the nickel-based catalysts for enhanced CO2 methanation[J]. Applied Catalysis B: Environmental, 2021, 282: 119561. |
15 | LI Shuangshuang, LIU Guilong, ZHANG Siran, et al. Cerium-modified Ni-La2O3/ZrO2 for CO2 methanation[J]. Journal of Energy Chemistry, 2020, 43: 155-164. |
16 | POLYCHRONOPOULOU K, ZEDAN AF, KATSIOTIS M S, et al. Rapid microwave assisted sol-gel synthesis of CeO2 and Ce x Sm1- x O2 nanoparticle catalysts for CO oxidation[J]. Molecular Catalysis, 2017, 428: 41-55. |
17 | SIAKAVELAS G I, CHARISIOU N D, ALKHOORI S, et al. Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction[J]. Applied Catalysis B: Environmental, 2021, 282: 119562. |
18 | 田郡博, 古芳娜, 苏发兵, 等. 二氧化碳甲烷化催化剂及反应机理研究进展[J]. 过程工程学报, 2023, 23(3): 375-395. |
TIAN Junbo, GU Fangna, SU Fabing, et al. CO2 methanation: Recent advances in catalyst development and reaction mechanistic study[J]. The Chinese Journal of Process Engineering, 2023, 23(3): 375-395. | |
19 | KRCHA Matthew D, MAYERNICK Adam D, JANIK Michael J. Periodic trends of oxygen vacancy formation and C—H bond activation over transition metal-doped CeO2 (111) surfaces[J]. Journal of Catalysis, 2012, 293: 103-115. |
20 | JIANG Yuexiu, HUANG Tongxia, DONG Lihui, et al. Mn modified Ni/bsentonite for CO2 methanation[J]. Catalysts, 2018, 8(12): 646. |
21 | WANG Binxia, ZHANG Xinyue, LIU Yanan, et al. Basic intensity regulation of layered double oxide for CO2 adsorption process at medium temperature in coal gasification[J]. Chemical Engineering Journal, 2022, 446: 136842. |
22 | LIN Shuangxi, LI Zhenhua, LI Maoshuai. Tailoring metal-support interactions via tuning CeO2 particle size for enhancing CO2 methanation activity over Ni/CeO2 catalysts[J]. Fuel, 2023, 333: 126369. |
23 | XU Qian, HU Shanwei, WANG Weijia, et al. Temperature-induced structural evolution of Sm nanoparticles on Al2O3 thin film: An in situ investigation using SRPES, XPS and STM[J]. Applied Surface Science, 2018, 432: 115-120. |
24 | HU Feiyang, JIN Chengkai, WU Rundong, et al. Enhancement of hollow Ni/CeO2-Co3O4 for CO2 methanation: From CO2 adsorption and activation by synergistic effects[J]. Chemical Engineering Journal, 2023, 461: 142108. |
25 | ZHANG Min, LI Weiman, WU Xiaofeng, et al. Low-temperature catalytic oxidation of benzene over nanocrystalline Cu-Mn composite oxides by facile sol-gel synthesis[J]. New Journal of Chemistry, 2020, 44(6): 2442-2451. |
26 | 马源, 肖晴月, 岳君容, 等. CeO2-Al2O3复合载体负载Ni基催化剂催化CO x 共甲烷化性能[J]. 化工进展, 2023, 42(5): 2421-2428. |
MA Yuan, XIAO Qingyue, YUE Junrong, et al. CO x co-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. | |
27 | LIN Xueting, LI Shujun, HE Hui, et al. Evolution of oxygen vacancies in MnO x -CeO2 mixed oxides for soot oxidation[J]. Applied Catalysis B: Environmental, 2018, 223: 91-102. |
28 | GONZÁLEZ-CASTAÑO M, GONZÁLEZ-ARIAS J, BOBADILLA L F, et al. In-situ DRIFTS steady-state study of CO2 and CO methanation over Ni-promoted catalysts[J]. Fuel, 2023, 338: 127241. |
29 | FU Hao, SUN Shaohui, LIAN Honglei. Enhanced low-temperature CO2 methanation over Ni/ZrO2-Al2O3 catalyst: Effect of Al addition on catalytic performance and reaction mechanism[J]. Journal of CO2 Utilization, 2023, 69: 102415. |
30 | WANG Chunfen, SUN Hongman, LIU Xiaoqi, et al. Low-temperature CO2 methanation over Ru/CeO2: Investigation into Ru loadings[J]. Fuel, 2023, 345: 128238. |
31 | LIU Zhihao, GAO Xinhua, LIU Bo, et al. Highly stable and selective layered Co-Al-O catalysts for low-temperature CO2 methanation[J]. Applied Catalysis B: Environmental, 2022, 310: 121303. |
32 | QIN Daxin, XIE Dengbing, ZHENG Heping, et al. In-situ FTIR study of CO2 adsorption and methanation mechanism over bimetallic catalyst at low temperature[J]. Catalysis Letters, 2021, 151: 2894-2905. |
33 | SIAKAVELAS G I, CHARISIOU N D, ALKHOORI A, et al. Highly selective and stable Ni/La-M (M=Sm, Pr, and Mg)-CeO2 catalysts for CO2 methanation[J]. Journal of CO2 Utilization, 2021, 51: 101618. |
34 | ZHANG Tengfei, WANG Weiwei, GU Fangna, et al. Enhancing the low-temperature CO2 methanation over Ni/La-CeO2 catalyst: The effects of surface oxygen vacancy and basic site on the catalytic performance[J]. Applied Catalysis B: Environmental, 2022, 312: 121385. |
35 | 张嘉琪, 林丽娜, 高文桂, 等. CeO2的形貌对CuO/CeO2催化剂CO2加氢制甲醇性能的影响[J]. 化工进展, 2022, 41(8): 4213-4223. |
ZHANG Jiaqi, LIN Lina, GAO Wengui, et al. Effect of CeO2 morphology on the performance of CuO/CeO2 catalyst for CO2 hydrogenation to methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4213-4223. | |
36 | MONICA S E S, DHAS C R, VENKATESH R,et al. Nebulizer sprayed nickel-manganese (Ni-Mn) mixed metal oxide nanocomposite coatings for high-performance electrochromic device applications[J]. Journal of Solid State Electrochemistry, 2022, 26(5): 1271-1290. |
37 | 王国栋, 郭亚飞, 李佳媛, 等. 碱/碱土金属修饰Ni基催化剂的CO2吸附与甲烷化性能[J]. 化工进展, 2021, 40(12): 6925-6933. |
WANG Guodong, GUO Yafei, LI Jiayuan, et al. CO2 adsorption and methanation performance of nickel-based catalysts modified with alkali/alkaline-earth metals[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6925-6933. | |
38 | DROUILLY Charlotte, KRAFFT Jean-Marc, AVERSENG Frédéric, et al. Role of oxygen vacancies in the basicity of ZnO: From the model methylbutynol conversion to the ethanol transformation application[J]. Applied Catalysis A: General, 2013, 453: 121-129. |
39 | WANG Xiang, SHI Hui, KWAK Ja Hun, et al. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient DRIFTS-MS studies[J]. ACS Catalysis, 2015, 5(11): 6337-6349. |
40 | SCHREITER Norman, KIRCHNER Johann, KURETI Sven. A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst[J]. Catalysis Communications, 2020, 140: 105988. |
41 | FATAH N A A, JALIL A A, SALLEH N F M, et al. Elucidation of cobalt disturbance on Ni/Al2O3 in dissociating hydrogen towards improved CO2 methanation and optimization by response surface methodology (RSM)[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18562-18573. |
42 | CÁRDENAS-ARENAS A, QUINDIMIL A, DAVÓ-QUIÑONERO A, et al. Isotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts[J]. Applied Catalysis B: Environmental, 2020, 265: 118538. |
43 | JIA Xinyu, ZHANG Xiaoshan, RUI Ning, et al. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity[J]. Applied Catalysis B: Environmental, 2019, 244: 159-169. |
[1] | WANG Yanhong, JIANG Lei, XUE Shuai, LI Hongwei, JIA Yuting. Analysis on heat transfer characteristics of supercritical methane in precooling channels [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1690-1699. |
[2] | LIU Ruolu, TANG Haibo, HE Feifei, LUO Fengying, WANG Jinge, YANG Na, LI Hongwei, ZHANG Ruiming. Recent research and prospect of liquid organic hydrogen carries technology [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1731-1741. |
[3] | WANG Hongyan, MA Ziran, LI Ge, MA Jing, ZHAO Chunlin, ZHOU Jiali, WANG Lei, PENG Shengpan. Research progress in synergistic catalytic elimination of multiple pollutants in flue gas of coal combustion coupled with renewable fuels [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1783-1795. |
[4] | CHEN Jiayi, GAO Weitao, YIN Yanan, WANG Cheng, OUYANG Hongwu, MAO Zongqiang. Preparation of PEMFC catalysts by electrodeposition [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1796-1809. |
[5] | WU Chenhe, LIU Yumin, YANG Xinmin, CUI Jiwei, JIANG Shaokun, YE Jinhua, LIU Lequan. Particulate photocatalysts for light-driven overall water splitting [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1810-1822. |
[6] | LIU Yurong, WANG Xingbao, LI Wenying. Regulation of catalyst acid sites and its effect on the deep hydrogenation performance of anthracene [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1832-1839. |
[7] | WANG Kai, YE Dingding, ZHU Xun, YANG Yang, CHEN Rong, LIAO Qiang. Performance of electrochemical reduction of CO2 by superaerophilic copper foam electrode with nanowires [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1232-1240. |
[8] | LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265. |
[9] |
ZHANG Pengfei, YAN Zhangyan, REN Liang, ZHAGN Kui, LIANG Jialin, ZHAO Guangle, ZHANG Fanbin, HU Zhihai.
Research progress in the catalytic hydrodealkylation of C |
[10] | GU Xingpeng, MA Hongqin, LIU Jiahao. Modification of Rainey nickel with phosphorus quantum dots and its catalytic hydrodesulfurization performances [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1293-1301. |
[11] | ZHANG Shuming, LIU Huazhang. Optimization of Fe1-x O ammonia synthesis catalyst by BP neural network model [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1302-1308. |
[12] | XIAO Yaoxin, ZHANG Jun, SHAN Rui, YUAN Haoran, CHEN Yong. Catalytic hydrogenation of furfuryl alcohol into pentanediol over Pt/CaO materials [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1318-1327. |
[13] | LI Weijie, KANG Jincan, ZHANG Chuanming, LIN Lina, LI Changxin, ZHU Hongping. Selective hydrogenation of methyl 3-hydroxypropionate over zirconium-modified Cu/SiO2 catalysts [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1328-1341. |
[14] | LI Kairui, GAO Zhaohua, LIU Tiantian, LI Jing, WEI Haisheng. Tuning the catalytic performance of Rh/FePO4 catalyst by reduction temperature for quinoline selective hydrogenation [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1342-1349. |
[15] | LIU Bin, WANG Yongjun, LYU Wangyang, CHEN Wenxing. Preparation and application of high stability titanium polyester catalyst TiOC@SiO2 [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1395-1402. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |