Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (4): 1700-1710.DOI: 10.16085/j.issn.1000-6613.2023-0656
• Chemical processes and equipment • Previous Articles
ZHU Yanni(), WANG Wei(), SUN Yanchenhao, WEI Gang, ZHANG Dawei
Received:
2023-04-23
Revised:
2023-06-25
Online:
2024-05-13
Published:
2024-04-15
Contact:
WANG Wei
通讯作者:
王维
作者简介:
祝妍妮(1997—),女,硕士研究生,研究方向为喷雾干燥。E-mail:zhuyanni@mail.dlut.edu.cn。
基金资助:
CLC Number:
ZHU Yanni, WANG Wei, SUN Yanchenhao, WEI Gang, ZHANG Dawei. Numerical simulation of centrifugal spray drying based on single-droplet evaporation[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1700-1710.
祝妍妮, 王维, 孙闫晨昊, 魏岗, 张大为. 基于单液滴蒸发的离心喷雾干燥数值模拟[J]. 化工进展, 2024, 43(4): 1700-1710.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0656
截面/mm | A | B | C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
实验值/K | 模拟值/K | 相对误差/% | 实验值/K | 模拟值/K | 相对误差/% | 实验值/K | 模拟值/K | 相对误差/% | |||
250 | 357.8 | 352.0 | 1.62 | 355.3 | 351.9 | 0.96 | 401.0 | 429.9 | 4.85 | ||
450 | 362.3 | 356.6 | 1.57 | 364.0 | 354.4 | 2.64 | 392.6 | 406.6 | 3.57 | ||
650 | 356.5 | 359.3 | 0.79 | 366.2 | 357.5 | 2.38 | 385.4 | 391.9 | 1.69 | ||
850 | 353.2 | 361.8 | 2.43 | 364.9 | 356.8 | 2.22 | 376.4 | 382.9 | 1.73 | ||
1050 | 354.4 | 362.4 | 2.26 | 360.6 | 361.1 | 0.14 | 373.6 | 376.6 | 0.8 | ||
1200 | 356.7 | 362.6 | 1.65 | 368.8 | 364.8 | 1.08 | 370.6 | 373.6 | 0.81 |
截面/mm | A | B | C | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
实验值/K | 模拟值/K | 相对误差/% | 实验值/K | 模拟值/K | 相对误差/% | 实验值/K | 模拟值/K | 相对误差/% | |||
250 | 357.8 | 352.0 | 1.62 | 355.3 | 351.9 | 0.96 | 401.0 | 429.9 | 4.85 | ||
450 | 362.3 | 356.6 | 1.57 | 364.0 | 354.4 | 2.64 | 392.6 | 406.6 | 3.57 | ||
650 | 356.5 | 359.3 | 0.79 | 366.2 | 357.5 | 2.38 | 385.4 | 391.9 | 1.69 | ||
850 | 353.2 | 361.8 | 2.43 | 364.9 | 356.8 | 2.22 | 376.4 | 382.9 | 1.73 | ||
1050 | 354.4 | 362.4 | 2.26 | 360.6 | 361.1 | 0.14 | 373.6 | 376.6 | 0.8 | ||
1200 | 356.7 | 362.6 | 1.65 | 368.8 | 364.8 | 1.08 | 370.6 | 373.6 | 0.81 |
雾化盘转速 /r·min-1 | 切向速度ut/m·s-1 | 径向速度ur/m·s-1 | 液滴平均直径Dvs/µm |
---|---|---|---|
24000 | 60.32 | 1.69 | 76.45 |
27000 | 67.86 | 1.83 | 69.33 |
30000 | 75.40 | 1.96 | 63.53 |
雾化盘转速 /r·min-1 | 切向速度ut/m·s-1 | 径向速度ur/m·s-1 | 液滴平均直径Dvs/µm |
---|---|---|---|
24000 | 60.32 | 1.69 | 76.45 |
27000 | 67.86 | 1.83 | 69.33 |
30000 | 75.40 | 1.96 | 63.53 |
1 | 王喜忠, 于才渊, 周才君. 喷雾干燥[M]. 2版. 北京: 化学工业出版社, 2003: 443. |
WANG Xizhong, YU Caiyuan, ZHOU Caijun. Spray drying[M]. 2nd ed. Beijing: Chemical Industry Press, 2003: 443. | |
2 | JERNDAL Erik, MATTISSON Tobias, THIJS Ivo, et al. NiO particles with Ca and Mg based additives produced by spray-drying as oxygen carriers for chemical-looping combustion[J]. Energy Procedia, 2009, 1(1): 479-486. |
3 | 储茂泉, 刘国杰. 喷雾干燥法制备载药微球时的形貌与粒度控制[J]. 化工学报, 2004, 55(11): 1903-1907. |
CHU Maoquan, LIU Guojie. Morphology and size control of drug-loaded microsphere by spray drying method[J]. Journal of Chemical Industry and Engineering, 2004, 55(11): 1903-1907. | |
4 | 李玲芳, 范长岭, 文政, 等. 喷雾干燥法制备球形Li3V2(PO4)3/C正极材料及其电化学性能[J]. 化工进展, 2019, 38(3): 1482-1486. |
LI Lingfang, FAN Changling, WEN Zheng, et al. Synthesis of spherical Li3V2(PO4)3/C by spray drying and its electrochemical performance as cathode material[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1482-1486. | |
5 | KISHIMOTO Y, YAMASHITA O, MAKITA K. Magnetic properties of sintered sendust alloys using powders granulated by spray drying method[J]. Journal of Materials Science, 2003, 38(16): 3479-3484. |
6 | GUO Baoyu, FLETCHER David F, LANGRISH Tim A G. Simulation of the agglomeration in a spray using Lagrangian particle tracking[J]. Applied Mathematical Modelling, 2004, 28(3): 273-290. |
7 | RAZMI Ramin, JUBAER Hasan, Michał KREMPSKI-SMEJDA, et al. Recent initiatives in effective modeling of spray drying[J]. Drying Technology, 2021, 39(11): 1614-1647. |
8 | BLEI Stefan, SOMMERFELD Martin. CFD in drying technology-spray-dryer simulation[M]//Modern Drying Technology. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014: 155-208. |
9 | WAWRZYNIAK Paweł, JASKULSKI Maciej, Ireneusz ZBICIŃSKI, et al. CFD modelling of moisture evaporation in an industrial dispersed system[J]. Advanced Powder Technology, 2017, 28(1): 167-176. |
10 | Meng Wai WOO. Computationalfluid dynamics simulation of spray dryers: An engineer’s guide[M]//MUJUMDAR Arun S. Advances in Drying Science & Technology. Boca Raton: CRC Press, 2017: 1-7. |
11 | HARVIE D J E, LANGRISH T A G, FLETCHER D F. Numerical simulations of gas flow patterns within a tall-form spray dryer[J]. Chemical Engineering Research and Design, 2001, 79(3): 235-248. |
12 | LANGRISH T A G, WILLIAMS J, FLETCHER D F. Simulation of the effects of inlet swirl on gas flow patterns in a pilot-scale spray dryer[J]. Chemical Engineering Research and Design, 2004, 82(7): 821-833. |
13 | JASKULSKI Maciej, TRAN Thi Thu Hang, TSOTSAS Evangelos. Design study of printer nozzle spray dryer by computational fluid dynamics modeling[J]. Drying Technology, 2020, 38(1/2): 211-223. |
14 | LANGRISH T A G, FLETCHER D F. Spray drying of food ingredients and applications of CFD in spray drying[J]. Chemical Engineering and Processing: Process Intensification, 2001, 40(4): 345-354. |
15 | HUANG Lixin, KUMAR Kurichi, MUJUMDAR A S. A parametric study of the gas flow patterns and drying performance of co-current spray dryer: Results of a computational fluid dynamics study[J]. Drying Technology, 2003, 21(6): 957-978. |
16 | WAWRZYNIAK Pawel, PODYMA Marek, ZBICINSKI Ireneusz, et al. Model of heat and mass transfer in an industrial counter-current spray-drying tower[J]. Drying Technology, 2012, 30(11/12): 1274-1282. |
17 | 吕凤, 张扬, 马才云, 等. 甘露醇喷雾干燥过程中液滴粒度分布变化的群体粒数衡算模拟和实验研究[J]. 化工进展, 2019, 38(2): 772-778. |
Feng LYU, ZHANG Yang, MA Caiyun, et al. Simulation and experimental study on the evolution of droplet size distribution during spray drying of mannitol[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 772-778. | |
18 | Muzammil ALI, MAHMUD Tariq, HEGGS Peter John, et al. CFD modeling of a pilot-scale countercurrent spray drying tower for the manufacture of detergent powder[J]. Drying Technology, 2017, 35(3): 281-299. |
19 | MEZHERICHER M, LEVY A, BORDE I. Probabilistic hard-sphere model of binary particle-particle interactions in multiphase flow of spray dryers[J]. International Journal of Multiphase Flow, 2012, 43: 22-38. |
20 | CHEN X D, XIE G Z. Fingerprints of the drying behaviour of particulate or thin layer food materials established using a reaction engineering model[J]. Food and Bioproducts Processing, 1997, 75(4): 213-222. |
21 | CHEN Xiaodong, LIN Sean Xu Qi. Air drying of milk droplet under constant and time-dependent conditions[J]. AIChE Journal, 2005, 51(6): 1790-1799. |
22 | Meng Wai WOO, DAUD Wan Ramli Wan, MUJUMDAR Arun S, et al. Comparative study of droplet drying models for CFD modelling[J]. Chemical Engineering Research and Design, 2008, 86(9): 1038-1048. |
23 | MALEKJANI Narjes, JAFARI Seid Mahdi. Simulation of food drying processes by Computational Fluid Dynamics (CFD); recent advances and approaches[J]. Trends in Food Science & Technology, 2018, 78: 206-223. |
24 | MUJUMDAR Arun S, HUANG Lixin, CHEN Xiaodong. An overview of the recent advances in spray-drying[J]. Dairy Science & Technology, 2010, 90(2): 211-224. |
25 | POOZESH Sadegh, BILGILI Ecevit. Scale-up of pharmaceutical spray drying using scale-up rules: A review[J]. International Journal of Pharmaceutics, 2019, 562: 271-292. |
26 | JUBAER Hasan, AFSHAR Sepideh, MEJEAN Serge, et al. Computationally inexpensive simulation of agglomeration in spray drying while preserving structure related information using CFD[J]. Powder Technology, 2020, 372: 372-393. |
27 | LIN Sean Xu Qi, CHEN Xiaodong. A model for drying of an aqueous lactose droplet using the reaction engineering approach[J]. Drying Technology, 2006, 24(11): 1329-1334. |
28 | CROWE C T. Review—Numerical models for dilute gas-particle flows[J]. Journal of Fluids Engineering, 1982, 104(3): 297-303. |
29 | MEZHERICHER M, LEVY A, BORDE I. Spray drying modelling based on advanced droplet drying kinetics[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(11): 1205-1213. |
30 | HUANG Lixin, KUMAR Kurichi, MUJUMDAR A S. A comparative study of a spray dryer with rotary disc atomizer and pressure nozzle using computational fluid dynamic simulations[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(6): 461-470. |
31 | HUANG Lixin, KUMAR Kurichi, MUJUMDAR A S. Simulation of a spray dryer fitted with a rotary disk atomizer using a three-dimensional computional fluid dynamic model[J]. Drying Technology, 2004, 22(6): 1489-1515. |
32 | GEORGE Oluwafemi Ayodele, CHEN Xiaodong, XIAO Jie, et al. An effective rate approach to modeling single-stage spray drying[J]. AIChE Journal, 2015, 61(12): 4140-4151. |
33 | XU Qilin Sean, CHEN Xiaodong. Improving the glass-filament method for accurate measurement of drying kinetics of liquid droplets[J]. Chemical Engineering Research and Design, 2002, 80(4): 401-410. |
34 | PATEL Kamlesh, CHEN Xiaodong, JEANTET Romain, et al. One-dimensional simulation of co-current, dairy spray drying systems—Pros and cons[J]. Dairy Science & Technology, 2010, 90(2): 181-210. |
35 | YANG Xingfu, XIAO Jie, Meng-Wai WOO, et al. Three-dimensional numerical investigation of a mono-disperse droplet spray dryer: Validation aspects and multi-physics exploration[J]. Drying Technology, 2015, 33(6): 742-756. |
36 | ADHIKARI B, HOWES T, BHANDARI B R, et al. Surface stickiness of drops of carbohydrate and organic acid solutions during convective drying: Experiments and modeling[J]. Drying Technology, 2003, 21(5): 839-873. |
37 | FU Nan, Meng Wai WOO, SELOMULYA Cordelia, et al. Shrinkage behaviour of skim milk droplets during air drying[J]. Journal of Food Engineering, 2013, 116(1): 37-44. |
38 | SHI Liming, BAYLESS David J. Comparison of boundary conditions for predicting the collection efficiency of cyclones[J]. Powder Technology, 2007, 173(1): 29-37. |
39 | MASTERS Keith. Spray drying handbook[M]. New York: John Wiley & Sons Inc, 1991: 725. |
40 | KIEVIET Frank Geert. Modeling quality in spray drying[D]. Netherlands:Endinhoven University of Technology, 1997. |
41 | ZHANG Shuo, LIU Nan, PAN Yanqiu, et al. Three-dimensional modelling of two-phase flow and transport in a pilot centrifugal spray dryer[J]. Chemical Physics Letters, 2021, 765: 138309. |
[1] | DU Yongliang, LIANG Zhuobin, GONG Yaoxu, BI Haojie, XU Zhiyuan, YUAN Hongying. Air gap membrane distillation research status and applications [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1655-1666. |
[2] | SUN Chao, AI Shiqin, LIU Yuechan. Numerical simulation plate side flow heat transfer new plate-shell heat exchanger with considering physical property changes and shell heat transfer [J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1676-1689. |
[3] | YU Yanfang, DING Pengcheng, MENG Huibo, SHI Bowen, YAO Yunjuan. Heat transfer enhancement of non-Newtonian fluid in the blade-type static mixer [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1145-1156. |
[4] | YIN Shaowu, LI Xianxian, HAN Jiawei, LU Ming, TONG Lige, WANG Li. Heat charge and release characteristics of household off-peak electricity thermal storage heating system [J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1206-1213. |
[5] | LI Jing, FANG Qing, ZHOU Wenhao, WU Guoliang, WANG Jiahui, ZHANG Hua, NI Hongwei. Effect of baffle configuration on the multiphase flow behaviors of vanadium shale leaching tank [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 619-627. |
[6] | JIAN Yu, CHEN Baoming, GONG Hanyu. Enhanced heat transfer characteristics of phase change heat storage systems based on hierarchically structured skeletons [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 649-658. |
[7] | BIAN Hanqing, ZHANG Xingkai, LIAO Ruiquan, WANG Dong, LI Rui, LUO Xiaochu, HOU Yaodong, BAI Xiaohong, GAN Qingming. Double-parameter measurement method of wet gas in phase-isolation state [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 722-733. |
[8] | HA Wen, YANG Yang, TANG Yu, CAO Di, ZHANG Chao, YANG Bin. Ultrasonic attenuation method for measuring phase holdup in oil-water annular flow [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 768-780. |
[9] | DENG Lei, YUAN Maobo, YANG Jiahui, YUE Yang, JIANG Jiahao, CHE Defu. High-temperature corrosion prediction model of water-cooled wall for boiler peak regulation [J]. Chemical Industry and Engineering Progress, 2024, 43(2): 925-936. |
[10] | XIE Guangshuo, ZHANG Siliang, HE Song, XIAO Juan, WANG Simin. Global sensitivity analysis for particulate fouling performance based on metamodel of optimal prognosis [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 328-337. |
[11] | FENG Debin, WANG Wen, MA Fanhua. Simulation and analysis for pipeline transportation characteristics of hydrogen-enriched compressed natural gas [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 390-399. |
[12] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[13] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[14] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[15] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |