Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1524-1534.DOI: 10.16085/j.issn.1000-6613.2023-0419

• Resources and environmental engineering • Previous Articles    

Review on recycling of graphite anode from spent lithium-ion batteries

CHU Zhenpu1(), CHEN Yumeng2,3(), LI Junguo3, SUN Qingxuan2, LIU Ke1,3,4()   

  1. 1.Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
    2.School of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen 518055, Guangdong, China
    3.School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
    4.Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
  • Received:2023-03-20 Revised:2023-05-30 Online:2024-04-11 Published:2024-03-10
  • Contact: CHEN Yumeng, LIU Ke

废旧锂离子电池负极石墨循环再生的研究进展

楚振普1(), 陈禹蒙2,3(), 李俊国3, 孙庆轩2, 刘科1,3,4()   

  1. 1.南方科技大学化学系,广东 深圳 518055
    2.深圳职业技术学院机电工程学院,广东 深圳 518055
    3.南方科技大学创新创业学院,广东 深圳 518055
    4.广东省催化重点实验室,广东 深圳 518055
  • 通讯作者: 陈禹蒙,刘科
  • 作者简介:楚振普(1999—),男,硕士研究生,研究方向为废旧锂离子电池资源化回收。E-mail:12232778@mail.sustech.edu.cn
  • 基金资助:
    深圳市科技计划(KQTD20180411143418361);广东省催化重点实验室(2020B121201002)

Abstract:

Lithium-ion battery capacity will reduce to a certain extent after used for 6—8 years and a large amount of waste are generated. The graphite anode accounts for 12%—21% of battery and its recycling is beneficial to the environment protection and economic development. In this paper, the regenerating methods of spent graphite anode into battery-grade graphite are summarized, which include the combination of leaching and calcination, graphite surface coating, preparation of composite materials and heteroatom doping. A brief comparison of these methods is also presented in terms of energy consumption and electrochemical performance. At present, direct regeneration for lithium-ion batteries is considered as the most suitable method for the regeneration of anode materials. In the future, more efficient and eco-friendly leaching agents and the multi-path low-temperature calcination methods should be investigated. In addition, high-capacity anode materials should be studied to composite with spent graphite, as well as the development of low-cost coating on the surface of graphite. Furthermore, the doping mechanism of heteroatoms in graphite is a direction worthy of research.

Key words: spent lithium-ion batteries, graphite, regeneration, recovery, waste treatment

摘要:

锂离子电池使用6~8年后,其容量会出现一定程度的衰减,从而产生大量废弃物。负极石墨在电池中质量分数占比为12%~21%,对其回收利用有利于保护环境和发展经济。针对废旧锂离子电池负极石墨再生为电池级石墨的方法展开综述,主要介绍了浸出煅烧组合、石墨表面涂覆、制备复合材料和杂原子掺杂的方法,并在能耗、电化学性能等方面做了简要比较。目前,在众多再循环方向中,将废旧石墨再生为电池级石墨是最合适的路径,而且能从根源上解决负极材料的再生问题。在此基础上,未来应开发更加高效环保的浸出剂,寻求多路径的低温煅烧方法,尝试其他高容量负极材料与废旧石墨复合或者石墨表面的低成本涂层,加强杂原子在石墨中掺杂机理的研究。

关键词: 废旧锂离子电池, 石墨, 再生, 回收, 废物处理

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd