Chemical Industry and Engineering Progress ›› 2024, Vol. 43 ›› Issue (3): 1524-1534.DOI: 10.16085/j.issn.1000-6613.2023-0419
• Resources and environmental engineering • Previous Articles
CHU Zhenpu1(), CHEN Yumeng2,3(), LI Junguo3, SUN Qingxuan2, LIU Ke1,3,4()
Received:
2023-03-20
Revised:
2023-05-30
Online:
2024-04-11
Published:
2024-03-10
Contact:
CHEN Yumeng, LIU Ke
楚振普1(), 陈禹蒙2,3(), 李俊国3, 孙庆轩2, 刘科1,3,4()
通讯作者:
陈禹蒙,刘科
作者简介:
楚振普(1999—),男,硕士研究生,研究方向为废旧锂离子电池资源化回收。E-mail:12232778@mail.sustech.edu.cn。
基金资助:
CLC Number:
CHU Zhenpu, CHEN Yumeng, LI Junguo, SUN Qingxuan, LIU Ke. Review on recycling of graphite anode from spent lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1524-1534.
楚振普, 陈禹蒙, 李俊国, 孙庆轩, 刘科. 废旧锂离子电池负极石墨循环再生的研究进展[J]. 化工进展, 2024, 43(3): 1524-1534.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0419
工艺 | 容量 /mAh·g-1 | 首次充电比容量 /mAh·g-1 | 首次库仑效率 /% | 容量保持率 /% | 参考文献 |
---|---|---|---|---|---|
①硫酸固化-酸浸法 ②Ar气氛,1500℃煅烧2h | 349(0.1C) | 88.3 | 98.8 | [ | |
①N2气氛,1400℃煅烧4h ②超声振动和筛分 | 360.8 | 几乎100(100次循环,1C) | [ | ||
①500℃高温热处理 ②0.1mol/L酸性溶液浸出一夜 ③N2气氛,3000℃煅烧6h | 352.5 | 97.3(1000次循环); 87.88(1600次循环) | [ | ||
①35℃下浸泡在2mol/L硫酸中过夜 ②60℃下干燥12h ③酸浸石墨与硝酸钴加入适量的醇中并搅拌直至醇干燥 ④N2气氛,900℃煅烧4h | 358(1次循环,0.1C); 245.4(500次循环,1C) | [ | |||
①硫酸固化酸浸处理 ②微波煅烧600~900℃,1~3h | 354.1(0.1C) | 83.4 | 98.3(60次循环,0.1C) | [ | |
①95℃下,200g/L硫酸溶液中液固比(L/S)为1mL∶5g,浸出4h ②Ar气氛,900℃煅烧2h | 358.1(0.1C) | 98.8(100次循环) | [ | ||
①加入硫酸盐、氟化钠250℃低温焙烧 ②水浸 | 85.71 | 91.2(400次循环) | [ | ||
①110℃真空干燥箱干燥10h ②与不同质量比的NH4F粉末手动搅拌混合2h ③空气气氛,200℃煅烧60min | 340.9 | 92.13 | 96(100次循环,1C) 96(400次循环,1C/1C,全电池) | [ |
工艺 | 容量 /mAh·g-1 | 首次充电比容量 /mAh·g-1 | 首次库仑效率 /% | 容量保持率 /% | 参考文献 |
---|---|---|---|---|---|
①硫酸固化-酸浸法 ②Ar气氛,1500℃煅烧2h | 349(0.1C) | 88.3 | 98.8 | [ | |
①N2气氛,1400℃煅烧4h ②超声振动和筛分 | 360.8 | 几乎100(100次循环,1C) | [ | ||
①500℃高温热处理 ②0.1mol/L酸性溶液浸出一夜 ③N2气氛,3000℃煅烧6h | 352.5 | 97.3(1000次循环); 87.88(1600次循环) | [ | ||
①35℃下浸泡在2mol/L硫酸中过夜 ②60℃下干燥12h ③酸浸石墨与硝酸钴加入适量的醇中并搅拌直至醇干燥 ④N2气氛,900℃煅烧4h | 358(1次循环,0.1C); 245.4(500次循环,1C) | [ | |||
①硫酸固化酸浸处理 ②微波煅烧600~900℃,1~3h | 354.1(0.1C) | 83.4 | 98.3(60次循环,0.1C) | [ | |
①95℃下,200g/L硫酸溶液中液固比(L/S)为1mL∶5g,浸出4h ②Ar气氛,900℃煅烧2h | 358.1(0.1C) | 98.8(100次循环) | [ | ||
①加入硫酸盐、氟化钠250℃低温焙烧 ②水浸 | 85.71 | 91.2(400次循环) | [ | ||
①110℃真空干燥箱干燥10h ②与不同质量比的NH4F粉末手动搅拌混合2h ③空气气氛,200℃煅烧60min | 340.9 | 92.13 | 96(100次循环,1C) 96(400次循环,1C/1C,全电池) | [ |
1 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414: 359-367. |
2 | DUNN Jennifer B, LINDA Gaines, JOHN Sullivan, et al. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries[J]. Environmental Science & Technology, 2012, 46(22): 12704-12710. |
3 | LI Li, FAN Ersha, GUAN Yibiao, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233. |
4 | XU Yanan, DONG Yanying, HAN Xiao, et al. Application for simply recovered LiCoO2 material as a high-performance candidate for supercapacitor in aqueous system[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10): 2435-2442. |
5 | PILLOT C. The rechargeable battery market and main trends 2013—2025, Proceedings of the 31st international battery seminar & exhibit[Z]. EnergyAvicenne. Shenzhen, China. 2014. |
6 | JIANG Jian, ZHU Jianhui, AI Wei, et al. Evolution of disposable bamboo chopsticks into uniform carbon fibers: A smart strategy to fabricate sustainable anodes for Li-ion batteries[J]. Energy & Environmental Science, 2014, 7(8): 2670-2679. |
7 | NIE Hehe, XU Long, SONG Dawei, et al. LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2): 1276-1280. |
8 | SCHIAVI Pier Giorgio, FARINA Luca, ZANONI Robertino, et al. Electrochemical synthesis of nanowire anodes from spent lithium ion batteries[J]. Electrochimica Acta, 2019, 319: 481-489. |
9 | FAN Ersha, LI Li, WANG Zhenpo, et al. Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects[J]. Chemical Reviews, 2020, 120(14): 7020-7063. |
10 | NATARAJAN Subramanian, ARAVINDAN Vanchiappan. An urgent call to spent LIB recycling: Whys and wherefores for graphite recovery[J]. Advanced Energy Materials, 2020, 10(37): 2002238. |
11 | LIU Kui, YANG Shenglong, LUO Luqin, et al. From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries[J]. Electrochimica Acta, 2020, 356: 136856. |
12 | WANG Huirong, HUANG Yingshan, HUANG Chenfan, et al. Reclaiming graphite from spent lithium ion batteries ecologically and economically[J]. Electrochimica Acta, 2019, 313: 423-431. |
13 | CHEN Xifan, ZHU Yuanzhi, PENG Wenchao, et al. Direct exfoliation of the anode graphite of used Li-ion batteries into few-layer graphene sheets: A green and high yield route to high-quality graphene preparation[J]. Journal of Materials Chemistry A, 2017, 5(12): 5880-5885. |
14 | HE Kai, ZHANG Zhiyuan, ZHANG Fushen. Synthesis of graphene and recovery of lithium from lithiated graphite of spent Li-ion battery[J]. Waste Management, 2021, 124: 283-292. |
15 | SCHIAVI Pier Giorgio, ZANONI Robertino, BRANCHI Mario, et al. Upcycling real waste mixed lithium-ion batteries by simultaneous production of rGO and lithium-manganese-rich cathode material[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(39): 13303-13311. |
16 | HAO Jie, MENG Xiangqi, FANG Sheng, et al. MnO2-functionalized amorphous carbon sorbents from spent lithium-ion batteries for highly efficient removal of cadmium from aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10210-10220. |
17 | NATARAJAN Subramanian, BAJAJ Hari C. Recovered materials from spent lithium-ion batteries (LIBs) as adsorbents for dye removal: Equilibrium, kinetics and mechanism[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4631-4643. |
18 | ZHANG Yan, GUO Xingming, WU Feng, et al. Mesocarbon microbead carbon-supported magnesium hydroxide nanoparticles: Turning spent Li-ion battery anode into a highly efficient phosphate adsorbent for wastewater treatment[J]. ACS Applied Materials & Interfaces, 2016, 8(33): 21315-21325. |
19 | ZHAO Tuo, YAO Ying, WANG Meiling, et al. Preparation of MnO2-modified graphite sorbents from spent Li-ion batteries for the treatment of water contaminated by lead, cadmium, and silver[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25369-25376. |
20 | ARAVINDAN Vanchiappan, JAYARAMAN Sundaramurthy, TEDJAR Farouk, et al. From electrodes to electrodes: Building high-performance Li-ion capacitors and batteries from spent lithium-ion battery carbonaceous materials[J]. ChemElectroChem, 2019, 6(5): 1407-1412. |
21 | DIVYA M L, NATARAJAN Subramanian, LEE Yun-Sung, et al. Achieving high-energy dual carbon Li-ion capacitors with unique low- and high-temperature performance from spent Li-ion batteries[J]. Journal of Materials Chemistry A, 2020, 8(9): 4950-4959. |
22 | DIVYA Madhusoodhanan Lathika, NATARAJAN Subramanian, LEE Yun-Sung, et al. Highly reversible Na-intercalation into graphite recovered from spent Li-ion batteries for high-energy Na-ion capacitor[J]. ChemSusChem, 2020, 13(21): 5654-5663. |
23 | NATARAJAN Subramanian, KRISHNAMOORTHY Karthikeyan, KIM Sang Jae. Effective regeneration of mixed composition of spent lithium-ion batteries electrodes towards building supercapacitor[J]. Journal of Hazardous Materials, 2022, 430: 128496. |
24 | NATARAJAN Subramanian, RAO EDE Sivasankara, BAJAJ Hari C, et al. Environmental benign synthesis of reduced graphene oxide (rGO) from spent lithium-ion batteries (LIBs) graphite and its application in supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 543: 98-108. |
25 | SCHIAVI Pier Giorgio, ALTIMARI Pietro, ZANONI Robertino, et al. Full recycling of spent lithium ion batteries with production of core-shell nanowires//exfoliated graphite asymmetric supercapacitor[J]. Journal of Energy Chemistry, 2021, 58: 336-344. |
26 | IFFELSBERGER Christian, JELLETT Cameron W, PUMERA Martin. 3D printing temperature tailors electrical and electrochemical properties through changing inner distribution of graphite/polymer[J]. Small, 2021, 17(24): e2101233. |
27 | JENA Kishore K, ALFANTAZI Akram, MAYYAS Ahmad T. Efficient and cost-effective hybrid composite materials based on thermoplastic polymer and recycled graphite[J]. Chemical Engineering Journal, 2022, 430: 132667. |
28 | NATARAJAN Subramanian, SHANTHANA LAKSHMI D, BAJAJ Hari C, et al. Recovery and utilization of graphite and polymer materials from spent lithium-ion batteries for synthesizing polymer-graphite nanocomposite thin films[J]. Journal of Environmental Chemical Engineering, 2015, 3(4): 2538-2545. |
29 | Siowwoon NG, GHOSH Kalyan, VYSKOCIL Jan, et al. Two-dimensional vanadium sulfide flexible graphite/polymer films for near-infrared photoelectrocatalysis and electrochemical energy storage[J]. Chemical Engineering Journal, 2022, 435: 135131. |
30 | LIANG Haojie, HOU Baohua, LI Wenhao, et al. Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries[J]. Energy & Environmental Science, 2019, 12(12): 3575-3584. |
31 | YI Chenxing, GE Peng, WU Xiqing, et al. Tailoring carbon chains for repairing graphite from spent lithium-ion battery toward closed-circuit recycling[J]. Journal of Energy Chemistry, 2022, 72: 97-107. |
32 | BAHAR Moradi, BOTTE Gerardine G. Recycling of graphite anodes for the next generation of lithium ion batteries[J]. Journal of Applied Electrochemistry, 2016, 46(2): 123-148. |
33 | LI J, MURPHY E, WINNICK J, et al. Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling[J]. Journal of Power Sources, 2001, 102(1-2): 294-301. |
34 | GUO Yang, LI Feng, ZHU Haochen, et al. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl)[J]. Waste Management, 2016, 51: 227-233. |
35 | YANG Yue, SONG Shaole, LEI Shuya, et al. A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery[J]. Waste Management, 2019, 85: 529-537. |
36 | BARBOSA Lucía, Fernando LUNA-LAMA, GONZÁLEZ PEÑA Yarivith, et al. Simple and eco-friendly fabrication of electrode materials and their performance in high-voltage lithium-ion batteries[J]. ChemSusChem, 2020, 13(4): 838-849. |
37 | 徐政和, 刘振达, 王树宾, 等. 湿法回收废旧锂离子电池有价金属的研究进展[J]. 中国矿业大学学报, 2022, 51(3): 454-465. |
XU Zhenghe, LIU Zhenda, WANG Shubin, et al. Review on hydrometallurgical recovery of valuable metals from spent lithium-ion batteries[J]. Journal of China University of Mining & Technology, 2022, 51(3): 454-465. | |
38 | MA Xiaotu, CHEN Mengyuan, CHEN Bin, et al. High-performance graphite recovered from spent lithium-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(24): 19732-19738. |
39 | XIAO Hougui, JI Guanjun, YE Long, et al. Efficient regeneration and reutilization of degraded graphite as advanced anode for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2021, 888: 161593. |
40 | YANG Jingbo, FAN Ersha, LIN Jiao, et al. Recovery and reuse of anode graphite from spent lithium-ion batteries via citric acid leaching[J]. ACS Applied Energy Materials, 2021, 4(6): 6261-6268. |
41 | ZHU Xiangdong, XIAO Jin, MAO Qiuyun, et al. Recycling of waste carbon residue from spent lithium-ion batteries via constant-pressure acid leaching[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(5): 1691-1704. |
42 | CHEN Qinghao, HUANG Liwu, LIU Jianbo, et al. A new approach to regenerate high-performance graphite from spent lithium-ion batteries[J]. Carbon, 2022, 189: 293-304. |
43 | GAO Yang, WANG Chengyan, ZHANG Jialiang, et al. Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing–leaching combined with high-temperature calcination[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(25): 9447-9455. |
44 | GAO Yang, ZHANG Jialiang, JIN Hao, et al. Regenerating spent graphite from scrapped lithium-ion battery by high-temperature treatment[J]. Carbon, 2022, 189: 493-502. |
45 | MENÉNDEZ J A, ARENILLAS A, FIDALGO B, et al. Microwave heating processes involving carbon materials[J]. Fuel Processing Technology, 2010, 91(1): 1-8. |
46 | KIM Teawon, Changshin JO, Won-Gwang LIM, et al. Facile conversion of activated carbon to battery anode material using microwave graphitization[J]. Carbon, 2016, 104: 106-111. |
47 | CANAL-RODRÍGUEZ M, ARENILLAS A, MENÉNDEZ J A, et al. Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries[J]. Carbon, 2018, 137: 384-394. |
48 | FAN Wenwen, ZHANG Jialiang, MA Ruixin, et al. Regeneration of graphite anode from spent lithium-ion batteries via microwave calcination[J]. Journal of Electroanalytical Chemistry, 2022, 908: 116087. |
49 | YI Chenxing, YANG Yue, ZHANG Tao, et al. A green and facile approach for regeneration of graphite from spent lithium ion battery[J]. Journal of Cleaner Production, 2020, 277: 123585. |
50 | YU Haijun, DAI Hongliang, ZHU Ying, et al. Mechanistic insights into the lattice reconfiguration of the anode graphite recycled from spent high-power lithium-ion batteries[J]. Journal of Power Sources, 2021, 481: 229159. |
51 | ZHANG Zhenghua, ZHU Xiangdong, HOU Huiliang, et al. Regeneration and utilization of graphite from the spent lithium-ion batteries by modified low-temperature sulfuric acid roasting[J]. Waste Management, 2022, 150: 30-38. |
52 | ZHU Xiangdong, XIAO Jin, MAO Qiuyun, et al. A promising regeneration of waste carbon residue from spent lithium-ion batteries via low-temperature fluorination roasting and water leaching[J]. Chemical Engineering Journal, 2022, 430: 132703. |
53 | WANG Chunmei, ZHAO Hailei, WANG Jing, et al. Electrochemical performance of modified artificial graphite as anode material for lithium ion batteries[J]. Ionics, 2013, 19(2): 221-226. |
54 | LI Zheng, LI Songxian, WANG Tao, et al. Facile fabrication of high-performance Li-ion battery carbonaceous anode from Li-ion battery waste[J]. Journal of the Electrochemical Society, 2021, 168(9): 090513. |
55 | GAO Yang, ZHANG Jialiang, CHEN Yongqiang, et al. Improvement of the electrochemical performance of spent graphite by asphalt coating[J]. Surfaces and Interfaces, 2021, 24: 101089. |
56 | Haoran DA, GAN Min, JIANG Danfeng, et al. Epitaxial regeneration of spent graphite anode material by an eco-friendly in-depth purification route[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(48): 16192-16202. |
57 | RUAN Dingshan, WANG Fengmei, WU Lin, et al. A high-performance regenerated graphite extracted from discarded lithium-ion batteries[J]. New Journal of Chemistry, 2021, 45(3): 1535-1540. |
58 | XIAO Yihua, LI Jian, HUANG Weiguo, et al. Green & efficient regeneration of graphite anode from spent lithium ion batteries enabled by asphalt coating[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(21): 16740-16752. |
59 | ZHANG Jin, LI Xuelei, SONG Dawei, et al. Effective regeneration of anode material recycled from scrapped Li-ion batteries[J]. Journal of Power Sources, 2018, 390: 38-44. |
60 | MA Zhen, ZHUANG Yuchan, DENG Yaoming, et al. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries[J]. Journal of Power Sources, 2018, 376: 91-99. |
61 | FENG Tianyu, XU Youlong, ZHANG Zhengwei, et al. Low-cost Al2O3 coating layer as a preformed SEI on natural graphite powder to improve coulombic efficiency and high-rate cycling stability of lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2016, 8(10): 6512-6519. |
62 | TALLMAN Killian R, YAN Shan, QUILTY Calvin D, et al. Improved capacity retention of lithium ion batteries under fast charge via metal-coated graphite electrodes[J]. Journal of the Electrochemical Society, 2020, 167(16): 160503. |
63 | RUAN Dingshan, WU Lin, WANG Fengmei, et al. A low-cost silicon-graphite anode made from recycled graphite of spent lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2021, 884: 115073. |
64 | XU Qi, WANG Qianwen, CHEN Dequan, et al. Silicon/graphite composite anode with constrained swelling and a stable solid electrolyte interphase enabled by spent graphite[J]. Green Chemistry, 2021, 23(12): 4531-4539. |
65 | Hyeon Gyun NAM, PARK Jae Yeol, Jong Min YUK, et al. Phase transformation mechanism and stress evolution in Sn anode[J]. Energy Storage Materials, 2022, 45: 101-109. |
66 | ZHU Xiangdong, XIAO Jin, CHEN Yiwen, et al. A high-performance nano-Sn/G@C composite anode prepared by waste carbon residue from spent lithium-ion batteries[J]. Chemical Engineering Journal, 2022, 450: 138113. |
67 | 侯冬慧. 微波改性回收锂电石墨制备高性能负极材料的研究[D]. 郑州:郑州大学, 2021. |
HOU Donghui. Preparation and properties of high-performance anode materials with microwave-modified spent graphite from lithium ion battery[D]. Zhengzhou: Zhengzhou University, 2021. | |
68 | XIAO Z, GAO L, SU S, et al. Efficient fabrication of metal sulfides/graphite anode materials derived from spent lithium-ion batteries by gas sulfidation process[J]. Materials Today Energy, 2021, 21: 100821. |
69 | YE Long, WANG Chunhui, CAO Liang, et al. Effective regeneration of high-performance anode material recycled from the whole electrodes in spent lithium-ion batteries via a simplified approach[J]. Green Energy & Environment, 2021, 6(5): 725-733. |
70 | PENG Chao, MERCER Michael P, SKYLARIS Chris-Kriton, et al. Lithium intercalation edge effects and doping implications for graphite anodes[J]. Journal of Materials Chemistry A, 2020, 8(16): 7947-7955. |
71 | XU Chong, MA Guang, YANG Wang, et al. One-step reconstruction of acid treated spent graphite for high capacity and fast charging lithium-ion batteries[J]. Electrochimica Acta, 2022, 415: 140198. |
72 | MARKEY Brandon, ZHANG Minghao, ROBB Iva, et al. Effective upcycling of graphite anode: Healing and doping enabled direct regeneration[J]. Journal of the Electrochemical Society, 2020, 167(16): 160511. |
[1] | BU Xiangning, REN Xibing, TONG Zheng, NI Mengqian, NI Chao, XIE Guangyuan. Effect of power ultrasound on resource recycling and utilization of spent lithium-ion batteries: A review [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 514-528. |
[2] | REN Pengkun, ZHONG Zhaoping, YANG Yuxuan, ZHANG Shan, DU Haoran, LI Qian. Control of heavy metals in sludge pyrolysis process by modified sepiolite [J]. Chemical Industry and Engineering Progress, 2024, 43(1): 541-550. |
[3] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[4] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[5] | WANG Baoying, WANG Huangying, YAN Junying, WANG Yaoming, XU Tongwen. Research progress of polymer inclusion membrane in metal separation and recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3990-4004. |
[6] | LYU Jie, HUANG Chong, FENG Ziping, HU Yafei, SONG Wenji. Performance and control system of gas engine heat pump based on waste heat recovery [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4182-4192. |
[7] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[8] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[9] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[10] | XIU Haoran, WANG Yungang, BAI Yanyuan, ZOU Li, LIU Yang. Combustion characteristics and ash melting behavior of Zhundong coal/municipal sludge blended combustion [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3242-3252. |
[11] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[12] | LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui. Biosynthesis and EOR application of magnetic Fe3O4 NPs [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474. |
[13] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[14] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
[15] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |