Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6609-6619.DOI: 10.16085/j.issn.1000-6613.2023-0118
• Resources and environmental engineering • Previous Articles
LI Jin1(), LIANG Jiahao2, MA Wenfeng3, GUO Shaohui1, WANG Qinghong1(), CHEN Chunmao1
Received:
2023-01-31
Revised:
2023-02-15
Online:
2024-01-08
Published:
2023-12-25
Contact:
WANG Qinghong
李晋1(), 梁家豪2, 马文峰3, 郭绍辉1, 王庆宏1(), 陈春茂1
通讯作者:
王庆宏
作者简介:
李晋(1993—),男,博士研究生,研究方向为固体废弃物资源化利用。E-mail:lijincup@163.com。
基金资助:
CLC Number:
LI Jin, LIANG Jiahao, MA Wenfeng, GUO Shaohui, WANG Qinghong, CHEN Chunmao. Enhanced anaerobic digestion of refinery waste activated sludge using thermal-refinery spend caustic pretreatment[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6609-6619.
李晋, 梁家豪, 马文峰, 郭绍辉, 王庆宏, 陈春茂. 热-碱渣预处理强化炼厂剩余活性污泥厌氧消化性能[J]. 化工进展, 2023, 42(12): 6609-6619.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0118
检测指标 | 剩余活性污泥 | 厌氧种泥 |
---|---|---|
pH | 7.23±0.05 | 6.68±0.15 |
总化学需氧量(TCOD)/mg·L-1 | 19674±818 | 14190±367 |
溶解性化学需氧量(SCOD)/mg·L-1 | 120±35 | 102±37 |
总固体(TS)浓度/mg·L-1 | 16614±276 | 12625±446 |
挥发性固体(VS)浓度/mg·L-1 | 11197±167 | 8715±177 |
溶解性蛋白质(PN)浓度/mg·L-1 | 4.77±0.22 | 2.43±0.08 |
溶解性多糖(PS)浓度/mg·L-1 | 23.91±1.85 | 48.24±3.14 |
含油量/% | 7.50±1.08 | 0.17±0.08 |
检测指标 | 剩余活性污泥 | 厌氧种泥 |
---|---|---|
pH | 7.23±0.05 | 6.68±0.15 |
总化学需氧量(TCOD)/mg·L-1 | 19674±818 | 14190±367 |
溶解性化学需氧量(SCOD)/mg·L-1 | 120±35 | 102±37 |
总固体(TS)浓度/mg·L-1 | 16614±276 | 12625±446 |
挥发性固体(VS)浓度/mg·L-1 | 11197±167 | 8715±177 |
溶解性蛋白质(PN)浓度/mg·L-1 | 4.77±0.22 | 2.43±0.08 |
溶解性多糖(PS)浓度/mg·L-1 | 23.91±1.85 | 48.24±3.14 |
含油量/% | 7.50±1.08 | 0.17±0.08 |
温度/℃ | 碱渣投 加量/% | 拟合 曲线R2 | Ymax/mL·g-1 VS | Rm/mL·g-1-VS·d-1 | λ/d |
---|---|---|---|---|---|
20 | 0 | 0.970 | 19.74 | 0.979 | 0.969 |
1 | 0.944 | 42.55 | 2.331 | 0.695 | |
2 | 0.991 | 58.73 | 4.032 | 1.494 | |
3 | 0.989 | 66.06 | 2.890 | 4.804 | |
4 | 0.950 | 52.24 | 2.734 | 9.931 | |
50 | 0 | 0.971 | 35.54 | 2.023 | 0 |
1 | 0.972 | 56.04 | 4.312 | 1.529 | |
2 | 0.990 | 74.43 | 4.575 | 2.378 | |
3 | 0.981 | 76.25 | 2.845 | 3.774 | |
4 | 0.954 | 50.70 | 2.414 | 3.720 | |
70 | 0 | 0.972 | 50.04 | 3.004 | 0 |
1 | 0.973 | 80.30 | 3.515 | 2.033 | |
2 | 0.995 | 77.80 | 4.269 | 7.320 | |
3 | 0.966 | 39.10 | 1.755 | 6.047 | |
4 | 0.976 | 34.35 | 1.474 | 6.164 | |
90 | 0 | 0.988 | 71.90 | 5.948 | 0.423 |
1 | 0.998 | 100.27 | 6.039 | 3.539 | |
2 | 0.990 | 63.00 | 2.952 | 8.601 | |
3 | 0.951 | 30.07 | 1.300 | 14.308 | |
4 | 0.960 | 18.62 | 0.901 | 12.344 |
温度/℃ | 碱渣投 加量/% | 拟合 曲线R2 | Ymax/mL·g-1 VS | Rm/mL·g-1-VS·d-1 | λ/d |
---|---|---|---|---|---|
20 | 0 | 0.970 | 19.74 | 0.979 | 0.969 |
1 | 0.944 | 42.55 | 2.331 | 0.695 | |
2 | 0.991 | 58.73 | 4.032 | 1.494 | |
3 | 0.989 | 66.06 | 2.890 | 4.804 | |
4 | 0.950 | 52.24 | 2.734 | 9.931 | |
50 | 0 | 0.971 | 35.54 | 2.023 | 0 |
1 | 0.972 | 56.04 | 4.312 | 1.529 | |
2 | 0.990 | 74.43 | 4.575 | 2.378 | |
3 | 0.981 | 76.25 | 2.845 | 3.774 | |
4 | 0.954 | 50.70 | 2.414 | 3.720 | |
70 | 0 | 0.972 | 50.04 | 3.004 | 0 |
1 | 0.973 | 80.30 | 3.515 | 2.033 | |
2 | 0.995 | 77.80 | 4.269 | 7.320 | |
3 | 0.966 | 39.10 | 1.755 | 6.047 | |
4 | 0.976 | 34.35 | 1.474 | 6.164 | |
90 | 0 | 0.988 | 71.90 | 5.948 | 0.423 |
1 | 0.998 | 100.27 | 6.039 | 3.539 | |
2 | 0.990 | 63.00 | 2.952 | 8.601 | |
3 | 0.951 | 30.07 | 1.300 | 14.308 | |
4 | 0.960 | 18.62 | 0.901 | 12.344 |
1 | 刘发强, 曲天煜, 张媛. 炼油厂含油污泥处理技术进展[J]. 工业水处理, 2017, 37(12): 1-5. |
LIU Faqiang, QU Tianyu, ZHANG Yuan. Technical progress in the treatment of oil-bearing sludge in refineries[J]. Industrial Water Treatment, 2017, 37(12): 1-5. | |
2 | LIZAMA Alfredo Córdova, FIGUEIRAS Cristian Carrera, HERRERA Rafael Rojas, et al. Effects of ultrasonic pretreatment on the solubilization and kinetic study of biogas production from anaerobic digestion of waste activated sludge[J]. International Biodeterioration & Biodegradation, 2017, 123: 1-9. |
3 | MAHMOODI Peyman, KARIMI Keikhosro, TAHERZADEH Mohammad J. Hydrothermal processing as pretreatment for efficient production of ethanol and biogas from municipal solid waste[J]. Bioresource Technology, 2018, 261: 166-175. |
4 | XIAO Benyi, LIU Cao, LIU Junxin, et al. Evaluation of the microbial cell structure damages in alkaline pretreatment of waste activated sludge[J]. Bioresource Technology, 2015, 196: 109-115. |
5 | LIN Feng, ZHU Xiaolin, LUO Yong, et al. Improvement of activated sludge dewatering properties using green conditioners: Chitosan hydrochloride and lysozyme[J]. RSC Advances, 2019, 9(12): 6936-6945. |
6 | 阮敏, 孙宇桐, 黄忠良, 等. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
RUAN Min, SUN Yutong, HUANG Zhongliang, et al. Energy economy evaluation of sludge pretreatment-anaerobic digestion system[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. | |
7 | 徐慧, 王素芳, 丁秋炜, 等. 高硫炼油碱渣废水处理技术研究[J]. 清洗世界, 2019, 35(4): 68-70. |
XU Hui, WANG Sufang, DING Qiuwei, et al. Study on treatment technology of high sulfur refinery alkali residue wastewater[J]. Cleaning World, 2019, 35(4): 68-70. | |
8 | LI Jin, WANG Qinghong, LIANG Jiahao, et al. An enhanced disintegration using refinery spent caustic for anaerobic digestion of refinery waste activated sludge[J]. Journal of Environmental Management, 2021, 284: 112022. |
9 | 侯银萍, 蔡斌斌, 张安龙, 等. 不同预处理方法促进剩余污泥破胞及厌氧消化产气效率的研究[J]. 陕西科技大学学报, 2022, 40(2): 13-19, 27. |
HOU Yinping, CAI Binbin, ZHANG Anlong, et al. Research on promoting sludge cracking and the biogas production efficiency of anaerobic digestion by different pretreatment methods[J]. Journal of Shaanxi University of Science & Technology, 2022, 40(2): 13-19, 27. | |
10 | ZOU Xuemei, YANG Ruijie, ZHOU Xu, et al. Effects of mixed alkali-thermal pretreatment on anaerobic digestion performance of waste activated sludge[J]. Journal of Cleaner Production, 2020, 259: 120940. |
11 | 唐心漪, 陈翔宇, 肖本益, 等. 剩余污泥热碱处理及其对污泥厌氧消化的强化研究进展[J]. 环境工程, 2022, 40(5): 218-226. |
TANG Xinyi, CHEN Xiangyu, XIAO Benyi, et al. Thermal-alkaline treatment of sewage sludge and its enhancement on anaerobic sludge digestion[J]. Environmental Engineering, 2022, 40(5): 218-226. | |
12 | 国家环境保护总局,水和废水监测分析方法编委会编. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
State Environmental Protection Administration. Water and wastewater monitoring and analysis method [M]. 4th edition. Beijing: China Environmental Science Press, 2002. | |
13 | SIEDLECKA Ewa, KUMIRSKA Jolanta, OSSOWSKI Tadeusz, et al. Determination of volatile fatty acids in environmental aqueous samples[J]. Polish Journal of Environmental Studies, 2008, 17(3): 351-356. |
14 | 李晋, 谢萍, 陈平, 等. 废白土热解残渣强化炼化剩余污泥水热液厌氧产能[J]. 工业水处理, 2022, 42(12): 65-71, 77. |
LI Jin, XIE Ping, CHEN Ping, et al. Enhancement of anaerobic digestion of refinery excess sludge hydrothermal liquid by pyrolytic residue of spent bleaching earth[J]. Industrial Water Treatment, 2022, 42(12): 65-71, 77. | |
15 | 王慧迪, 张伟军. 活性污泥水热过程中产生的类黑素对酶活性的影响机制[C]//中国环境科学学会. 全国污泥处理、处置与资源化利用交流研讨会. 张家港, 2019: 103-112. |
WANG Huidi, ZHANG Weijun. Mechanism of melanoidins products during hydrothermal process of activated sludge on enzyme activity[C]//Chinese Society for Environmental Sciences. National Symposium on Sludge Treatment, Disposal and Resource Utilization. Zhangjiagang, 2019: 103-112. | |
16 | 张广彩, 于会彬, 徐泽华, 等. 基于三维荧光光谱结合平行因子法的蘑菇湖上覆水溶解性有机质特征分析[J]. 生态与农村环境学报, 2019, 35(7): 933-939. |
ZHANG Guangcai, YU Huibin, XU Zehua, et al. The characteristics of dissolved organic matter in the overlying water of moguhu lake based on three dimensional fluorescence spectrum and parallel factor method[J]. Journal of Ecology and Rural Environment, 2019, 35(7): 933-939. | |
17 | 肖本益, 阎鸿, 魏源送. 污泥热处理及其强化污泥厌氧消化的研究进展[J]. 环境科学学报, 2009, 29(4): 673-682. |
XIAO Benyi, YAN Hong, WEI Yuansong. State of the art of thermal sludge pretreatment and its enhancement for anaerobic sludge digestion[J]. Acta Scientiae Circumstantiae, 2009, 29(4): 673-682. | |
18 | 代勤, 张文哲, 于潘芬, 等. 热、热碱处理对污泥溶胞和溶解性有机物的影响[J]. 环境科学, 2018, 39(5): 2283-2288. |
DAI Qin, ZHANG Wenzhe, YU Panfen, et al. Effects of heat and heat-alkaline treatments on disintegration and dissolved organic matter in sludge[J]. Environmental Science, 2018, 39(5): 2283-2288. | |
19 | LIU Xuran, XU Qiuxiang, WANG Dongbo, et al. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: Process optimization and effects on anaerobic digestion and polyacrylamide degradation[J]. Bioresource Technology, 2019, 281: 158-167. |
20 | 郝晓地, 唐兴, 李季, 等. 腐殖酸影响剩余污泥厌氧消化过程实验研究[J]. 环境科学学报, 2018, 38(8): 3061-3068. |
HAO Xiaodi, TANG Xing, LI Ji, et al. Experimental study on the effect of humic acid on the process of anaerobic digestion of excess sludge[J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3061-3068. | |
21 | LI Ji, HAO Xiaodi, VAN LOOSDRECHT Mark C M, et al. Effect of humic acids on batch anaerobic digestion of excess sludge[J]. Water Research, 2019, 155: 431-443. |
22 | YUAN Donghai, AN Yechen, HE Xiaosong, et al. Fluorescent characteristic and compositional change of dissolved organic matter and its effect on heavy metal distribution in composting leachates[J]. Environmental Science and Pollution Research, 2018, 25(19): 18866-18878. |
23 | SHAO Liming, WANG Xiaoyi, XU Huacheng, et al. Enhanced anaerobic digestion and sludge dewaterability by alkaline pretreatment and its mechanism[J]. Journal of Environmental Sciences, 2012, 24(10): 1731-1738. |
24 | WANG Shuai, HU Zhiyi, GENG Ziqian, et al. Elucidating the production and inhibition of melanoidins products on anaerobic digestion after thermal-alkaline pretreatment[J]. Journal of Hazardous Materials, 2022, 424: 127377. |
25 | CHEN Hong, YI Hao, LI Hechao, et al. Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: Performance, energy balance and, enhancement mechanism[J]. Renewable Energy, 2020, 147: 2409-2416. |
26 | LI Chunxing, ZHANG Guangyi, ZHANG Zhikai, et al. Alkaline thermal pretreatment at mild temperatures for biogas production from anaerobic digestion of antibiotic mycelial residue[J]. Bioresource Technology, 2016, 208: 49-57. |
27 | 温佳欣. 腐殖酸对污泥厌氧消化及水解酶活性的影响研究[D]. 无锡: 江南大学, 2022. |
WEN Jiaxin. Effects of humic acids on sludge anaerobic digestion and hydrolase activity[D]. Wuxi: Jiangnan University, 2022. | |
28 | 赵琛, 张列宇, 马涛, 等. UASB反应器对晚期渗滤液的碳氮协同削减效应[J]. 环境科学研究, 2019, 32(11): 1913-1920. |
ZHAO Chen, ZHANG Lieyu, MA Tao, et al. The synergistic effect for C/N removal by UASB reactor on mature landfill leachate[J]. Research of Environmental Sciences, 2019, 32(11): 1913-1920. | |
29 | KIMURA Hiroyuki, NASHIMOTO Hiroaki, SHIMIZU Mikio, et al. Microbial methane production in deep aquifer associated with the accretionary prism in Southwest Japan[J]. The ISME Journal, 2010, 4(4): 531-541. |
30 | SHAH H N, COLLINS M D. Genus bacteroides A chemotaxonomical perspective[J]. Journal of Applied Bacteriology, 1983, 55(3): 403-416. |
31 | CHEN Shuangya, SONG Lei, DONG Xiuzhu. Sporacetigenium mesophilum Gen. nov., sp. nov., isolated from an anaerobic digester treating municipal solid waste and sewage[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(4): 721-725. |
32 | FAISAL Shah, SALAMA El-Sayed, MALIK Kamran, et al. Anaerobic digestion of cabbage and cauliflower biowaste: Impact of iron oxide nanoparticles (IONPs) on biomethane and microbial communities alteration[J]. Bioresource Technology Reports, 2020, 12: 100567. |
33 | 许晓晴, 陈烨, 甄毓, 等. 渤海沉积物中产甲烷途径及产甲烷菌群落特征[J]. 海洋地质与第四纪地质, 2022, 42(3): 50-61. |
XU Xiaoqing, CHEN Ye, ZHEN Yu, et al. Methanogenic pathways and methanogen communities in the sediments from Bohai Sea[J]. Marine Geology & Quaternary Geology, 2022, 42(3): 50-61. | |
34 | 陈烨, 孙治雷, 吴能友, 等. 海洋沉积物中甲烷代谢微生物的研究进展[J]. 海洋地质与第四纪地质, 2022, 42(6): 82-92. |
CHEN Ye, SUN Zhilei, WU Nengyou, et al. Advances in the study of methane-metabolizing microbial communities in marine sediments[J]. Marine Geology & Quaternary Geology, 2022, 42(6): 82-92. | |
35 | XIAO Benyi, TANG Xinyi, YI Hao, et al. Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal pretreatment and low-temperature thermal-alkaline pretreatment[J]. Bioresource Technology, 2020, 304: 122979. |
[1] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[2] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[3] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[4] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[5] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[6] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[7] | ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, ZHANG Wenyi. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. |
[8] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[9] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[10] | MENG Xiaoshan, TANG Zijian, CHEN Lin, HUHE Taoli, ZHOU Zhengzhong. Research progress of the early warning and regulation techniques for excessive acidification in the anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1595-1605. |
[11] | HE Yangdong, CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280. |
[12] | SUN Qianqian, LIU Zhen, LI Rui, ZHANG Xi, YANG Mingde, WU Yulong. Low temperature hydrothermal coupling of ferrous ion activated persulfate to improve the dewatering performance of waste activated sludge [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 595-602. |
[13] | ZHU Jiaxin, ZHU Wenzhe, XU Jun, XIE Jing, WANG Wenbiao, XIE Li. Enhancement of anaerobic digestion under antibiotics stress via conductive materials application: A review [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1008-1019. |
[14] | HU Yuying, WANG Xin, ZHANG Shihao, HU Fengping, WANG Chuqiao, WU Jing, XU Li, XU Gaoping. Research progress on the visualization of flow field of anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6535-6543. |
[15] | XU Li, WU Yufeng, ZHANG Yuanjia, HU Shuangqing. Progress of comprehensive utilization technology of agricultural and forestry wastes in Guangdong under the background of “carbon peaking and carbon neutrality” [J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5648-5660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |