Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6554-6566.DOI: 10.16085/j.issn.1000-6613.2023-0105
• Resources and environmental engineering • Previous Articles
YE Qinhui(), CHEN Hong(), YU Xin, WANG Kai, YU Luying, ZENG Kejia
Received:
2023-01-29
Revised:
2023-03-20
Online:
2024-01-08
Published:
2023-12-25
Contact:
CHEN Hong
通讯作者:
陈红
作者简介:
叶沁辉(1999—),男,硕士研究生,研究方向为废弃生物质资源化应用。E-mail:porter2022@163.com。
基金资助:
CLC Number:
YE Qinhui, CHEN Hong, YU Xin, WANG Kai, YU Luying, ZENG Kejia. Preparation and resource utilization of biogas residue biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6554-6566.
叶沁辉, 陈红, 于鑫, 王凯, 于露滢, 曾可佳. 沼渣生物炭的制备及资源化利用研究进展[J]. 化工进展, 2023, 42(12): 6554-6566.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0105
制备工艺 | 热解温度 | 停留时间 | 主要产物 | 特点 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
高温热解法 | 300~950℃ | 0.2~12h | 固体 | 速度慢、产物吸附性好 | 吸附剂、生物油等 | [ |
水热炭化法 | 140~280℃ | 0.5~24h | 固体、液体 | 速度慢、生物炭产量高 | 土壤改良剂、有机肥料等 | [ |
气化法 | 600~900℃ | 10~30s | 气体 | 反应速度快、成炭率低 | 气体燃料 | [ |
微波热解法 | 450~800℃ | 5~30min | 固体 | 反应效率高、生产成本高 | 多孔碳纳米管等 | [ |
制备工艺 | 热解温度 | 停留时间 | 主要产物 | 特点 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
高温热解法 | 300~950℃ | 0.2~12h | 固体 | 速度慢、产物吸附性好 | 吸附剂、生物油等 | [ |
水热炭化法 | 140~280℃ | 0.5~24h | 固体、液体 | 速度慢、生物炭产量高 | 土壤改良剂、有机肥料等 | [ |
气化法 | 600~900℃ | 10~30s | 气体 | 反应速度快、成炭率低 | 气体燃料 | [ |
微波热解法 | 450~800℃ | 5~30min | 固体 | 反应效率高、生产成本高 | 多孔碳纳米管等 | [ |
改性方法 | 活化剂 | 作用效果 | 参考文献 |
---|---|---|---|
酸改性 | 酸 | 酸改性可清除生物炭表面及孔隙中的杂质,增大比表面积,并引入用于吸附污染物的酸结合位点,如酚基、内酯基、羧基等官能团,提高生物炭亲水性 | [ |
碱改性 | 碱 | 碱改性可去除生物炭表面酸性基团,增加吸附性能相关的官能团数量,使表面非极性增强;增加生物炭表面的正电荷,增强吸附能力 | [ |
表面活化剂改性 | 表面活性剂 | 改变生物炭的亲疏水性,增加炭材料表面的吸附位点 | [ |
金属离子活化改性 | 金属或金属盐 | 金属离子负载到生物炭表面,可改变其表面电荷,提高生物炭离子交换和静电吸附的能力;增加生物炭的磁性,方便资源化回收 | [ |
氧化剂活化 | 氧化剂 | 氧化剂活化主要依靠强氧化剂氧化生物炭中的有机物,提高生物炭表面含氧官能团的数量 | [ |
改性方法 | 活化剂 | 作用效果 | 参考文献 |
---|---|---|---|
酸改性 | 酸 | 酸改性可清除生物炭表面及孔隙中的杂质,增大比表面积,并引入用于吸附污染物的酸结合位点,如酚基、内酯基、羧基等官能团,提高生物炭亲水性 | [ |
碱改性 | 碱 | 碱改性可去除生物炭表面酸性基团,增加吸附性能相关的官能团数量,使表面非极性增强;增加生物炭表面的正电荷,增强吸附能力 | [ |
表面活化剂改性 | 表面活性剂 | 改变生物炭的亲疏水性,增加炭材料表面的吸附位点 | [ |
金属离子活化改性 | 金属或金属盐 | 金属离子负载到生物炭表面,可改变其表面电荷,提高生物炭离子交换和静电吸附的能力;增加生物炭的磁性,方便资源化回收 | [ |
氧化剂活化 | 氧化剂 | 氧化剂活化主要依靠强氧化剂氧化生物炭中的有机物,提高生物炭表面含氧官能团的数量 | [ |
1 | 李景明, 徐文勇, 李冰峰, 等. 关于中国沼气行业发展困境和出路的思考[J]. 可再生能源, 2020, 38(12): 1563-1568. |
LI Jingming, XU Wenyong, LI Bingfeng, et al. The development dilemma and way out of China’s biogas industry[J]. Renewable Energy Resources, 2020, 38(12): 1563-1568. | |
2 | 魏泉源. 规模化沼气工程沼液、沼渣减量化及资源化利用研究[D]. 北京: 北京化工大学, 2014. |
WEI Quanyuan. Reduction and resource utilization of biogas residue and biogas slurry from scale siogas engineering[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
3 | LIU Jingxin, HUANG Simian, CHEN Kai, et al. Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties[J]. Bioresource Technology, 2020, 302: 122841. |
4 | 陈志科, 罗宏伟, 欧海, 等. 沼渣在农业生产中的影响探析[J]. 农技服务, 2016, 33(12): 143-144. |
CHEN Zhike, LUO Hongwei, Hai OU, et al. Analysis on the influence of biogas residue in agricultural production[J]. Agricultural Technology Service, 2016, 33(12): 143-144. | |
5 | 秦乃群, 马巧云, 高敬伟, 等. 沼渣施用对花生小麦轮作作物产量及土壤养分和重金属含量的影响[J]. 中国农学通报, 2022, 38(8): 58-63. |
QIN Naiqun, MA Qiaoyun, GAO Jingwei, et al. Effects of biogas residue application on nutrient and heavy metal content in soil and yield of crops under peanut-wheat rotation[J]. Chinese Agricultural Science Bulletin, 2022, 38(8): 58-63. | |
6 | 荆卫民, 宫江平, 刘秉寿, 等. 不同配比餐厨垃圾沼渣与有机肥对土壤理化性质的影响[J]. 现代农业科技, 2022(12): 125-128, 132. |
JING Weimin, GONG Jiangping, LIU Bingshou, et al. Effects of different ratios of food waste biogas residue to organic fertilizer on soil physicochemical properties[J]. Modern Agricultural Science and Technology, 2022(12): 125-128, 132. | |
7 | BERNARDO Maria, CORREA Catalina Rodriguez, RINGELSPACHER Yvonne, et al. Porous carbons derived from hydrothermally treated biogas digestate[J]. Waste Management, 2020, 105: 170-179. |
8 | SHARMA Hari Bhakta, PANIGRAHI Sagarika, SARMAH Ajit K, et al. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept[J]. Science of the Total Environment, 2020, 706(C): 135907. |
9 | SHENG Xiaoyu, WANG Junkai, CUI Quantao, et al. A feasible biochar derived from biogas residue and its application in the efficient adsorption of tetracycline from an aqueous solution[J]. Environmental Research, 2022, 207: 112175. |
10 | 易蔓, 李婷婷, 李海红, 等. Ca/Mg负载改性沼渣生物炭对水中磷的吸附特性[J]. 环境科学, 2019, 40(3): 1318-1327. |
YI Man, LI Tingting, LI Haihong, et al. Characteristics of phosphorus adsorption in aqueous solution by Ca/Mg-loaded biogas residue biochar[J]. Environmental Science, 2019, 40(3): 1318-1327. | |
11 | 邓梦婷. 猪粪沼渣热解特性及其重金属迁移转化实验研究[D]. 武汉: 华中科技大学, 2020. |
DENG Mengting. Experimental study on pyrolysis characteristics and heavy metal transform and migration of swine manure digestate[D]. Wuhan: Huazhong University of Science and Technology, 2020. | |
12 | KISTLER Rainer C, WIDMER Fritz, BRUNNER Paul H. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge[J]. Environmental Science & Technology, 1987, 21(7): 704-708. |
13 | MILIOTTI Edoardo, CASINI David, ROSI Luca, et al. Lab-scale pyrolysis and hydrothermal carbonization of biomass digestate: Characterization of solid products and compliance with biochar standards[J]. Biomass and Bioenergy, 2020, 139: 105593. |
14 | DENG Fang, JIANG Huier, XIE Zhijie, et al. Nutrient recovery from biogas slurry via hydrothermal carbonization with different agricultural and forestry residue[J]. Industrial Crops and Products, 2022, 189: 115891. |
15 | QIU Jing, DE FERNANDES SOUZA Marcella, ROBLES-AGUILAR Ana A, et al. Improving biochar properties by co-pyrolysis of pig manure with bio-invasive weed for use as the soil amendment[J]. Chemosphere, 2023, 312: 137229. |
16 | 严军. 生物质固体燃料高效气化技术的研究[D]. 西宁: 青海大学, 2012. |
YAN Jun. Study on efficient gasification technology of biomass solid fuel[D]. Xining: Qinghai University, 2012. | |
17 | 金梁, 魏丹, 李玉梅, 等. 生物炭制备及其稳定性估测方法研究进展[J]. 农业资源与环境学报, 2015, 32(5): 423-428. |
JIN Liang, WEI Dan, LI Yumei, et al. Progress on biochar preparation and its assessement methods of stability[J]. Journal of Agricultural Resources and Environment, 2015, 32(5): 423-428. | |
18 | 常圣强. 基于资源化利用的沼渣和煤共气化过程及机理研究[D]. 北京: 中国矿业大学(北京), 2020. |
CHANG Shengqiang. Study on co-gasification reaction process and mechanism of digestate and coal based on resource utilization[D]. Beijing: China University of Mining & Technology(Beijing), 2020. | |
19 | DEBALINA B, REDDY R B, VINU R. Production of carbon nanostructures in biochar, bio-oil and gases from bagasse via microwave assisted pyrolysis using Fe and Co as susceptors[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 310-318. |
20 | MARI Selvam S, PARAMASIVAN Balasubramanian. Evaluation of influential factors in microwave assisted pyrolysis of sugarcane bagasse for biochar production[J]. Environmental Technology & Innovation, 2021, 24: 101939. |
21 | 王燕杉, 侯立安, 宋英今, 等. 沼渣生物炭在水处理中的应用进展[J]. 精细化工, 2021, 38(7): 1325-1332, 1354. |
WANG Yanshan, HOU Lian, SONG Yingjin, et al. Advances in application of biogas digestate-derived in water treatment[J]. Fine Chemicals, 2021, 38(7): 1325-1332, 1354. | |
22 | 王申宛, 郑晓燕, 校导, 等. 生物炭的制备、改性及其在环境修复中应用的研究进展[J]. 化工进展, 2020, 39(S2): 352-361. |
WANG Shenwan, ZHENG Xiaoyan, XIAO Dao, et al. Research progress of production, modification and application in environment remediation of biochar[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 352-361. | |
23 | PECCHI Matteo, BARATIERI Marco. Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 462-475. |
24 | OMORIYEKOMWAN Joy Esohe, TAHMASEBI Arash, DOU Jinxiao, et al. A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass[J]. Fuel Processing Technology, 2021, 214: 106686. |
25 | BAO Zhijie, SHI Chunzhen, TU Wenying, et al. Recent developments in modification of biochar and its application in soil pollution control and ecoregulation[J]. Environmental Pollution, 2022, 313: 120184. |
26 | CHENG Ning, WANG Bing, WU Pan, et al. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review[J]. Environmental Pollution, 2021, 273: 116448. |
27 | SIZMUR Tom, FRESNO Teresa, Gökçen AKGÜL, et al. Biochar modification to enhance sorption of inorganics from water[J]. Bioresource Technology, 2017, 246: 34-47. |
28 | NING Zhifang, XU Bin, ZHONG Weizhang, et al. Preparation of phosphoric acid modified antibiotic mycelial residues biochar: Loading of nano zero-valent iron and promotion on biogas production[J]. Bioresource Technology, 2022, 348: 126801. |
29 | YU Qiangqiang, XIA Dong, LI Heng, et al. Effectiveness and mechanisms of ammonium adsorption on biochars derived from biogas residues[J]. RSC Advances, 2016, 6(91): 88373-88381. |
30 | 汪怡, 李莉, 宋豆豆, 等. 玉米秸秆改性生物炭对铜、铅离子的吸附特性[J]. 农业环境科学学报, 2020, 39(6): 1303-1313. |
WANG Yi, LI Li, SONG Doudou, et al. Copper and lead ion adsorption characteristics of modified corn stalk biochars[J]. Journal of Agro-Environment Science, 2020, 39(6): 1303-1313. | |
31 | 李慧源. 表面活性剂对甘蔗渣生物炭吸附和超声催化氧化性能影响研究[D]. 郑州: 华北水利水电大学, 2019. |
LI Huiyuan. Effect of A surfactant on adsorption and sonocatalytic oxidation performance of bagasse biochar[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019. | |
32 | ZHOU Yanmei, GAO Bin, ZIMMERMAN Andrew R, et al. Sorption of heavy metals on chitosan-modified biochars and its biological effects[J]. Chemical Engineering Journal, 2013, 231: 512-518. |
33 | 张一璇. CTAB改性甘蔗渣生物炭吸附水中对羟基苯甲酸酯类的效能与机理[D]. 西安: 西北大学, 2018. |
ZHANG Yixuan. Adsorption of parabens from aqueous solution using modified bagasse biochar by CTAB[D]. Xi'an: Northwest University, 2018. | |
34 | 钟晓晓, 王涛, 原文丽, 等. 生物炭的制备、改性及其环境效应研究进展[J]. 湖南师范大学自然科学学报, 2017, 40(5): 44-50. |
ZHONG Xiaoxiao, WANG Tao, YUAN Wenli, et al. Progresses of preparation, modification and environmental behavior of biochar[J]. Journal of Natural Science of Hunan Normal University, 2017, 40(5): 44-50. | |
35 | WANG M C, SHENG G D, QIU Y P. A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions[J]. International Journal of Environmental Science and Technology, 2015, 12(5): 1719-1726. |
36 | LIU Jiwei, JIANG Jianguo, AIHEMAITI Aikelaimu, et al. Removal of phosphate from aqueous solution using MgO-modified magnetic biochar derived from anaerobic digestion residue[J]. Journal of Environmental Management, 2019, 250: 109438. |
37 | 黄煜恒, 周李雯, 王思思. 过氧化氢改性生物炭对四环素的吸附效果评价[J]. 能源与环境, 2021(2): 96-97. |
HUANG Yuheng, ZHOU Liwen, WANG Sisi. Evaluation of adsorption effect of hydrogen peroxide modified biochar on tetracycline[J]. Energy and Environment, 2021(2): 96-97. | |
38 | MA Zhifei, CHENG Zian, YANG Yifei, et al. Acid-modified anaerobic biogas residue biochar activates persulfate for phenol degradation: Enhancement of the efficiency and non-radical pathway[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 663: 131121. |
39 | 徐皓普, 汤波. 碱改性生物炭处理含Cd2+废水效果对比研究[J]. 环境科学与管理, 2022, 47(6): 82-85. |
XU Haopu, TANG Bo. Study on adsorption mechanism of Cd wastewater by modified biochar[J]. Environmental Science and Management, 2022, 47(6): 82-85. | |
40 | ZHANG Qiuya, SONG Jiabao, ZHANG Yanan, et al. Preparation of MnCeO x -modified tea waste biochar as peroxodisulfate activator for tetracycline degradation[J]. Journal of Water Process Engineering, 2022, 50: 103209. |
41 | YAO Ying, GAO Bin, INYANG Mandu, et al. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential[J]. Bioresource Technology, 2011, 102(10): 6273-6278. |
42 | 李沫杉, 田宜水, 胡二峰, 等. 沼渣热解动力学、热力学分析及热解产物特性研究[J]. 太阳能学报, 2022, 43(6): 226-233. |
LI Moshan, TIAN Yishui, HU Erfeng, et al. Pyrolysis kinetics and thermodynamic analysis of biogas residue and its pyrolysis product characteristics research[J]. Acta Energiae Solaris Sinica, 2022, 43(6): 226-233. | |
43 | 靳红梅, 杜静, 郭瑞华, 等. 沼渣水热炭添加对猪粪中温厌氧消化的促进作用[J]. 中国沼气, 2018, 36(1): 47-53. |
JIN Hongmei, DU Jing, GUO Ruihua, et al. The promotion effect of digestate hydrochar addition on anaerobic digestion of swine manure[J]. China Biogas, 2018, 36(1): 47-53. | |
44 | SUN Lei, WAN Shungang, LUO Wensui. Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: Characterization, equilibrium, and kinetic studies[J]. Bioresource Technology, 2013, 140: 406-413. |
45 | 詹梨苹, 赵锐, 祝仟, 等. 基于厨余垃圾发酵沼渣热解过程模拟的生命周期评价研究[J]. 中国测试, 2022, 48(10): 1-7, 15. |
ZHAN Liping, ZHAO Rui, ZHU Qian, et al. Life cycle assessment based on pyrolysis process simulation of food waste fermentation residue[J]. China Measurement & Test, 2022, 48(10): 1-7, 15. | |
46 | 孙涛, 朱新萍, 李典鹏, 等. 不同原料生物炭理化性质的对比分析[J]. 农业资源与环境学报, 2017, 34(6): 543-549. |
SUN Tao, ZHU Xinping, LI Dianpeng, et al. Comparison of biochars characteristics from different raw materials[J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 543-549. | |
47 | 燕燕, 李勤锋, 徐苏云, 等. 猪粪沼渣制备生物炭的磷形态转化分析[J]. 浙江农业科学, 2020, 61(4): 772-775. |
YAN Yan, LI Qinfeng, XU Suyun, et al. Phosphorus form transformation during the production of biochar from digested swine manure[J]. Journal of Zhejiang Agricultural Sciences, 2020, 61(4): 772-775. | |
48 | CANTRELL Keri B, HUNT Patrick G, UCHIMIYA Minori, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012, 107: 419-428. |
49 | FIDEL Rivka B, LAIRD David A, THOMPSON Michael L, et al. Characterization and quantification of biochar alkalinity[J]. Chemosphere, 2017, 167: 367-373. |
50 | 焦宇欣. 添加剂对沼渣热解制备生物炭特性影响及制备工艺改进研究[D]. 贵阳: 贵州民族大学, 2021. |
JIAO Yuxin. Study on the effect of additives on the characteristics of biochar prepared by pyrolysis of biogas residue and the improvement of preparation process[D]. Guiyang: Guizhou Minzu University, 2021. | |
51 | 于晓娜, 张晓帆, 李志鹏, 等. 热解温度对花生壳生物炭产率及部分理化特性的影响[J]. 河南农业大学学报, 2017, 51(1): 108-114. |
YU Xiaona, ZHANG Xiaofan, LI Zhipeng, et al. Pyrolysis temperature on the peanut-shell-biochar production rate and some physical and chemical properties[J]. Journal of Henan Agricultural University, 2017, 51(1): 108-114. | |
52 | 郁强强. 改性类水滑石和沼渣生物炭对磷/氨氮的吸附机理和应用研究[D]. 厦门: 厦门大学, 2015. |
YU Qiangqiang. Study on adsorption mechanism and application of modified hydrotalcite-like compounds and biogas residue biochar for phosphorus/ammonia nitrogen[D]. Xiamen: Xiamen University, 2015. | |
53 | 李刘军, 赵保卫, 刘辉, 等. 热解温度对玉米秸秆生物炭稳定性的影响[J]. 江苏农业科学, 2020, 48(9): 258-262. |
LI Liujun, ZHAO Baowei, LIU Hui, et al. Effect of pyrolysis temperature on stability of corn straw biochar[J]. Jiangsu Agricultural Sciences, 2020, 48(9): 258-262. | |
54 | WU Wenzhu, YAN Beibei, ZHONG Lei, et al. Combustion ash addition promotes the production of K-enriched biochar and K release characteristics[J]. Journal of Cleaner Production, 2021, 311: 127557. |
55 | CUI Quantao, ZHANG Wei, CHAI Senyou, et al. The potential of green biochar generated from biogas residue as a heterogeneous persulfate activator and its non-radical degradation pathways: Adsorption and degradation of tetracycline[J]. Environmental Research, 2022, 204: 112335. |
56 | 杨紫薇. 铁改性沼渣基生物炭强化牛粪厌氧消化过程研究[D]. 合肥: 合肥工业大学, 2021. |
YANG Ziwei. Study on enhanced anaerobic digestion of cow dung with iron modified biochar based on biogas residue[D]. Hefei: Hefei University of Technology, 2021. | |
57 | 赵硕, 赵影, 赵曼利, 等. 600℃秸秆生物炭对典型黑土阳离子交换性能和盐基离子组成的影响[J]. 黑龙江农业科学, 2018(9): 41-44. |
ZHAO Shuo, ZHAO Ying, ZHAO Manli, et al. Effects of 600℃ straw biochar on cation exchange capacity and base ion composition in typical black soil[J]. Heilongjiang Agricultural Sciences, 2018(9): 41-44. | |
58 | XIA Dong, LI Heng, CHEN Zheng, et al. Mesoporous activated biochar for As(III) adsorption: A new utilization approach for biogas residue[J]. Industrial & Engineering Chemistry Research, 2019, 58(38): 17859-17870. |
59 | 马雅怡, 黄朝晖, 刘秋新, 等. 万古霉素菌渣生物炭的制备及特性研究[J]. 工业安全与环保, 2023, 49(2): 90-93. |
MA Yayi, HUANG Zhaohui, LIU Qiuxin, et al. Study on the preparation and characteristics of vancomycin residue biocha[J]. Industrial Safety and Environmental Protection, 2023, 49(2): 90-93. | |
60 | 陈红霞, 杜章留, 郭伟, 等. 施用生物炭对华北平原农田土壤容重、阳离子交换量和颗粒有机质含量的影响[J]. 应用生态学报, 2011, 22(11): 2930-2934. |
CHEN Hongxia, DU Zhangliu, GUO Wei, et al. Effects of biochar amendment on cropland soil bulk density, cation exchange capacity, and particulate organic matter content in the North China Plain[J]. Chinese Journal of Applied Ecology, 2011, 22(11): 2930-2934. | |
61 | 焦宇欣, 李东阳, 龚天成, 等. 基于光谱色谱分析热解温度对沼渣生物炭DOM组成特性的影响[J]. 环境科学研究, 2021, 34(10): 2468-2476. |
JIAO Yuxin, LI Dongyang, GONG Tiancheng, et al. Effect of pyrolysis temperature on composition characteristics of DOM of biogas residue biochar based on spectral and chromatographic analysis[J]. Research of Environmental Sciences, 2021, 34(10): 2468-2476. | |
62 | 卢伦. 生物炭对水中邻苯二甲酸二乙酯的吸附研究[D]. 青岛: 中国海洋大学, 2015. |
LU Lun. Adsorption of diethylphthalates on biochars from aqueous solution[D]. Qingdao: Ocean University of China, 2015. | |
63 | 郑杨清, 郁强强, 王海涛, 等. 沼渣制备生物炭吸附沼液中氨氮[J]. 化工学报, 2014, 65(5): 1856-1861. |
ZHENG Yangqing, YU Qiangqiang, WANG Haitao, et al. Preparation of biochars from biogas residue and adsorption of ammonia-nitrogen in biogas slurry[J]. CIESC Journal, 2014, 65(5): 1856-1861. | |
64 | WANG Mengyao, WANG Gaihong, QIAN Lina, et al. Biochar production using biogas residue and their adsorption of ammonium nitrogen and chemical oxygen demand in wastewater[J]. Biomass Conversion and Biorefinery, 2023, 13(5): 3881-3892. |
65 | 高婷. 厨余厌氧发酵沼渣生物炭制备及其在染料废水中的应用[D]. 扬州: 扬州大学, 2022. |
GAO Ting. Preparation of biogas residue biochar from kitchen waste anaerobic fermentation and application to dye wastewater[D]. Yangzhou: Yangzhou University, 2022. | |
66 | 黄思勉. 餐厨沼渣炭材料的制备及其对活性艳红X-3B的脱除研究[D]. 武汉: 武汉纺织大学, 2021. |
HUANG Simian. Preparation of carbon material from food waste digestate and its removal of reactive brilliant red X-3B[D]. Wuhan: Wuhan Textile University, 2021. | |
67 | PAN Jingwen, GAO Baoyu, WANG Siyuan, et al. Waste-to-resources: Green preparation of magnetic biogas residues-based biochar for effective heavy metal removals[J]. Science of the Total Environment, 2020, 737: 140283. |
68 | XIA Dong, TAN Fen, ZHANG Chuanpan, et al. ZnCl2-activated biochar from biogas residue facilitates aqueous As(Ⅲ) removal[J]. Applied Surface Science, 2016, 377: 361-369. |
69 | LI Xiaoying, YU Zhou, CHEN Qincheng, et al. Kill three birds with one stone: Iron-doped graphitic biochar from biogas residues for ammonium persulfate activation to simultaneously degrade benzo[a]pyrene and improve lettuce growth[J]. Chemical Engineering Journal, 2022, 430: 132844. |
70 | MA Mengyu, CHEN Yi, SU Ruidian, et al. In situ synthesis of Fe-N co-doped carbonaceous nanocomposites using biogas residue as an effective persulfate activator for remediation of aged petroleum contaminated soils[J]. Journal of Hazardous Materials, 2022, 435: 128963. |
71 | 庄海峰, 赵宇飞, 丁少华, 等. 沼渣生物炭基Fenton催化剂的制备及其高效降解吡虫啉农药废水的研究[J]. 环境污染与防治, 2022, 44(2): 149-153, 159. |
ZHUANG Haifeng, ZHAO Yufei, DING Shaohua, et al. Preparation of biogas residue biochar based Fenton catalyst and its efficiency for degradation of imidacloprid pesticide wastewater[J]. Environmental Pollution & Control, 2022, 44(2): 149-153, 159. | |
72 | SUN Peng, HUA Yinfeng, ZHAO Jie, et al. Insights into the mechanism of hydrogen peroxide activation with biochar produced from anaerobically digested residues at different pyrolysis temperatures for the degradation of BTEXS[J]. Science of the Total Environment, 2021, 788: 147718. |
73 | LUO Zifeng, WANG Dehan, ZENG Weishen, et al. Removal of refractory organics from piggery bio-treatment effluent by the catalytic ozonation process with piggery biogas residue biochar as the catalyst[J]. Science of the Total Environment, 2020, 734: 139448. |
74 | SHANG Aojie, YANG Kaile, LU Yaling, et al. A novel slow-release fertilizer derived from itaconic acid-modified biochar: Synthesis, characteristics, and applications in cucumber seedlings[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(4): 4616-4626. |
75 | BRUNO Glaser, JOHANNES Lehmann, WOLFGANG Zech. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review[J]. Biology and Fertility of Soils, 2002, 35(4): 219-230. |
76 | 赵光昕. 施用生物炭对农田土壤硝化反硝化过程及N2O排放的影响[D]. 天津: 天津农学院, 2019. |
ZHAO Guangxin. Effects of biochar on N2O emission and nitrification and denitrification process in A farmland soil[D]. Tianjin: Tianjin Agricultural University, 2019. | |
77 | ZHENG Xuebo, DONG Jianxin, ZHANG Wenhui, et al. Biogas residue biochar shifted bacterial community, mineralization, and molecular structure of organic carbon in a sandy loam Alfisol[J]. GCB Bioenergy, 2021, 13(5): 838-848. |
78 | TAN Shimeng, ZHOU Guoying, YANG Quan, et al. Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: A review[J]. Science of the Total Environment, 2023, 864: 160990. |
79 | 王丽渊, 丁松爽, 刘国顺. 生物质炭土壤改良效应研究进展[J]. 中国土壤与肥料, 2014(3): 1-6. |
WANG Liyuan, DING Songshuang, LIU Guoshun. Progress of the research on biochars’ influence on soil reclaimarion[J]. Soil and Fertilizer Sciences in China, 2014(3): 1-6. | |
80 | 陆海燕, 刘杰, 孙彬, 等. 生物炭对土壤的改良作用及对种植业的影响[J]. 现代农业科技, 2016(1): 248-250, 254. |
LU Haiyan, LIU Jie, SUN Bin, et al. Improvement of biological carbon on soil and its effect on planting[J]. Modern Agricultural Science and Technology, 2016(1): 248-250, 254. | |
81 | 代红翠, 陈源泉, 赵影星, 等. 不同有机物料还因对华北农田土壤固碳的影响及原因分析[J]. 农业工程学报, 2016, 32(S2): 103-110. |
DAI Hongcui, CHEN Yuanquan, ZHAO Yingxing, et al. Effects of different organic materials on soil carbon sequestration in North China[J]. Transactions of Chinese Society of Agricultural Engineering, 2016, 32(S2): 103-110. | |
82 | 李明旭. 海带渣生物炭固载降解菌在PAHs污染土壤修复中的应用[D]. 大连: 大连理工大学, 2022. |
LI Mingxu. Application of kelp residue biochar immobilized degrading bacteria in PAHs-contaminated soil remediation[D]. Dalian: Dalian University of Technology, 2022. | |
83 | 杨启豪. 农田土壤重金属污染现状及修复技巧探讨[J]. 科学技术创新, 2019(31): 5-6. |
YANG Qihao. Current situation of heavy metal pollution in farmland soil and discussion on remediation techniques[J]. Scientific and Technological Innovation, 2019(31): 5-6. | |
84 | 胡松水. 农田土壤重金属污染钝化修复技术新见解[J]. 科学技术创新, 2018(21): 161-162. |
HU Songshui. New opinion on passivation remediation technology of heavy metal pollution in farmland soil[J]. Scientific and Technological Innovation, 2018(21): 161-162. | |
85 | 容贤健, 朱红祥, 王日梁, 等. 畜禽沼渣肥及其生物炭对多金属污染土壤修复的研究[J]. 中国金属通报, 2021(8): 127-128, 131. |
RONG Xianjian, ZHU Hongxiang, WANG Riliang, et al. Study on the remediation of polymetallic contaminated soil by biogas residue fertilizer and its biochar[J]. China Metal Bulletin, 2021(8): 127-128, 131. | |
86 | 曹志洪. 生物炭与污染土壤修复及烟草行业的研发进展[J]. 中国烟草学报, 2019, 25(3): 1-12. |
CAO Zhihong. Biochar and soil remediation technologies and their research development in tobacco industry[J]. Acta Tabacaria Sinica, 2019, 25(3): 1-12. | |
87 | HARVEY Omar R, HERBERT Bruce E, RHUE Roy D, et al. Metal interactions at the biochar-water interface: Energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry[J]. Environmental Science & Technology, 2011, 45(13): 5550-5556. |
88 | AHMAD Munir, USMAN Adel R A, AL-FARAJ Abdullah S, et al. Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants[J]. Chemosphere, 2018, 194: 327-339. |
89 | LIU Hongbo, WANG Xingkang, FANG Yueying, et al. Enhancing thermophilic anaerobic co-digestion of sewage sludge and food waste with biogas residue biochar[J]. Renewable Energy, 2022, 188: 465-475. |
90 | 李婧, 许彬, 潘子欣, 等. 生物炭强化厌氧消化研究进展[J]. 应用化工, 2022, 51(8): 2427-2432. |
LI Jing, XU Bin, PAN Zixin, et al. Research progress and prospect of biochar enhanced anaerobic fermentation[J]. Applied Chemical Industry, 2022, 51(8): 2427-2432. | |
91 | 董钦. 沼渣生物炭缓解餐厨垃圾厌氧消化系统氨胁迫的效应及机理研究[D]. 重庆: 重庆大学, 2021. |
DONG Qin. Effect and mechanism of biochar from biogas residue on ammonia stress in anaerobic digestion system of food waste[D]. Chongqing: Chongqing University, 2021. | |
92 | 高健, 李娟, 左晓宇, 等. 沼渣制备生物炭添加对小麦秸秆厌氧消化产气性能及微生物群落的影响[J]. 中国沼气, 2020, 38(6): 14-20. |
GAO Jian, LI Juan, ZUO Xiaoyu, et al. Effect of biochar-addition on anaerobic digestion performance of wheat straw and its microbial community structure[J]. China Biogas, 2020, 38(6): 14-20. | |
93 | 王玉, 余广炜, 林佳佳, 等. 沼渣、飞灰和污泥生物炭制备建筑陶粒[J]. 化工进展, 2023, 42(2): 1039-1050. |
WANG Yu, YU Guangwei, LIN Jiajia, et al. Preparation of building ceramsite from food waste digestate residues, incineration fly ash and sludge biochar[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1039-1050. | |
94 | 岳正波, 王策, 吴文涛. 一种基于生物质厌氧干发酵后沼渣活性炭制备超级电容器的方法: CN107644742A[P]. 2018-01-30. |
YUE Zhengbo, WANG Ce, WU Wentao. Method for preparing super capacitor based on biogas residue active carbon produced after biomass anaerobic dry fermentation: CN107644742A[P]. 2018-01-30. | |
95 | 张春鑫, 魏勇, 钟卫红, 等. 生物炭在农业土壤重金属污染修复中的应用研究[J]. 农业技术与装备, 2022(11): 65-67. |
ZHANG Chunxin, WEI Yong, ZHONG Weihong, et al. Application of biochar in remediation of heavy metal pollution in agricultural soil[J]. Agricultural Technology & Equipment, 2022(11): 65-67. | |
96 | 刘青松, 白国敏. 生物炭及其改性技术修复土壤重金属污染研究进展[J]. 应用化工, 2022, 51(11): 3285-3291, 3299. |
LIU Qingsong, BAI Guomin. Research progress of biochar and its modification technology for remediation of soil heavy metal pollution[J]. Applied Chemical Industry, 2022, 51(11): 3285-3291, 3299. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[8] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |