Chemical Industry and Engineering Progress ›› 2023, Vol. 42 ›› Issue (12): 6544-6553.DOI: 10.16085/j.issn.1000-6613.2023-0065
• Resources and environmental engineering • Previous Articles
ZHAO Haiyang1(
), LI Xin1, ZHANG Lin2(
), HOU Li’an1,2, HE Mingqing1
Received:2023-01-13
Revised:2023-03-04
Online:2024-01-08
Published:2023-12-25
Contact:
ZHANG Lin
赵海洋1(
), 李鑫1, 张林2(
), 侯立安1,2, 何明清1
通讯作者:
张林
作者简介:赵海洋(1988—),男,博士,工程师,研究方向为特种废水处理。E-mail:ziyueabcd@163.com。
基金资助:CLC Number:
ZHAO Haiyang, LI Xin, ZHANG Lin, HOU Li’an, HE Mingqing. Radiation effect of polyamide thin film composite membrane in the radioactive wastewater treatment[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6544-6553.
赵海洋, 李鑫, 张林, 侯立安, 何明清. 放射性废水处理中聚酰胺复合膜辐射效应研究进展[J]. 化工进展, 2023, 42(12): 6544-6553.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2023-0065
| 核素种类 | 射线类型 | 能量 | |
|---|---|---|---|
| /MeV | /kJ·mol-1 | ||
| 60Co | γ | 1.17 1.33 | 1.12×108 1.28×108 |
| 134Cs | γ | 0.605 | 5.81×107 |
| 90Sr | β | 0.546 | 5.24×107 |
| 核素种类 | 射线类型 | 能量 | |
|---|---|---|---|
| /MeV | /kJ·mol-1 | ||
| 60Co | γ | 1.17 1.33 | 1.12×108 1.28×108 |
| 134Cs | γ | 0.605 | 5.81×107 |
| 90Sr | β | 0.546 | 5.24×107 |
| 复合膜种类 | 60Co外照射 | 134Cs浸入照射 | 参考文献 | ||
|---|---|---|---|---|---|
| AD1/kGy | AD2/kGy | AD1/kGy | AD2/kGy | ||
| PA-300 | 10 | 15 | — | — | [ |
| SU-500① | 7 | 8~9 | 6 | 7~8 | [ |
| SU-600① | 7 | 8~9 | 6 | 7~8 | [ |
| SU-700L① | 7 | 8~9 | 6 | 7~8 | [ |
| SU-700R① | 7 | 8~9 | 6 | 7~8 | [ |
| NTR-7197 | >40 | >40 | >30 | >30 | [ |
| FT-30 | >40 | >40 | >30 | >30 | [ |
| 复合膜种类 | 60Co外照射 | 134Cs浸入照射 | 参考文献 | ||
|---|---|---|---|---|---|
| AD1/kGy | AD2/kGy | AD1/kGy | AD2/kGy | ||
| PA-300 | 10 | 15 | — | — | [ |
| SU-500① | 7 | 8~9 | 6 | 7~8 | [ |
| SU-600① | 7 | 8~9 | 6 | 7~8 | [ |
| SU-700L① | 7 | 8~9 | 6 | 7~8 | [ |
| SU-700R① | 7 | 8~9 | 6 | 7~8 | [ |
| NTR-7197 | >40 | >40 | >30 | >30 | [ |
| FT-30 | >40 | >40 | >30 | >30 | [ |
| PA膜 | 源项 | 条件 | 性能参数 | 参考文献 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 膜来源 | 种类 | 样式 | 辐射源 | 剂量率/kGy·h-1 | 剂量/kGy | 辐射 | 测试 | 渗透通量/L·m-2·h-1·bar-1 | 截留率/% | |
| PA-300 | 反渗透膜 | 平板膜 | 60Co | — | 0 | 湿 | NaCl 200mg/kg,压力39.2bar | 324 | 98.3 | [ |
| 0.48 | 25 | 湿 | 499 | 98.4 | ||||||
| 0.48 | 50 | 湿 | 875 | 79.5 | ||||||
| 未知 | 反渗透膜 | 平板膜 | 加速器 | 0 | 湿 | NaCl 1500mg/kg,压力14.71bar,pH6.5,25℃ | 3.14 | 99.5 | [ | |
| 400 | 湿 | 3.14 | 99.5 | |||||||
| 1000 | 湿 | 2.95 | 99.4 | |||||||
| 2000 | 湿 | 2.83 | 88.1 | |||||||
| 4000 | 湿 | 132.00 | 2.1 | |||||||
| Osmonics SE | 反渗透膜 | 平板膜 | 60Co | 0.5 | 0 | 湿 | 膜面积138cm2,NaCl 1.0g/L,压力28bar,流速250L/h,pH6.0,(25±0.5)℃ | 2.9 | 98.6 | [ |
| 0.5 | 100 | 湿 | 2.7① | 96.0① | ||||||
| 0.5 | 1000 | 湿 | 7.0 | 64 | ||||||
| Osmonics SE | 反渗透膜 | 平板膜 | 60Co | 0.5 | 0 | 干 | 膜面积138cm2,NaCl 0.5g/L,压力28bar,流速250L/h,pH6.0,(25±0.5)℃ | 2.9 | 98.5 | [ |
| 0.5 | 100 | 干 | 2.3 | 97.0 | ||||||
| 0.5 | 200 | 干 | 2.5 | 96.3 | ||||||
| 0.5 | 500 | 干 | 4.3 | 95 | ||||||
| 0.5 | 1000 | 干 | 7.0 | 64 | ||||||
| SW30 HR | 反渗透膜 | 巻式膜 | 60Co | 0 | 0 | 膜面积2.6cm2,压力30bar,流速300L/h,pH6.0,(25±3)℃ | 1.1 | 99.1 | [ | |
| 0.5 | 1000 | 2.2 | 75 | |||||||
| Osmonics SE | 反渗透膜 | 巻式膜 | 0 | 0 | 2.9 | 98.5 | ||||
| 0.5 | 1000 | 7.2 | 64 | |||||||
| 5 | 1000 | 92.3 | ||||||||
| 自制 | 反渗透膜 | 平板膜 | 60Co | 0 | 0 | 干/湿 | 膜面积6.48cm2,NaCl 2000mg/kg,压力15.5bar,流速0.19m/s,pH7.0,(25±0.5)℃ | 1.94 | 98.1 | [ |
| 6 | 20 | 干/湿 | 1.93/1.92① | 98.5/99.0① | ||||||
| 6 | 50 | 干/湿 | 1.95/1.89① | 98.0/98.8① | ||||||
| 6 | 100 | 干/湿 | 2.00/1.94① | 97.5/98.5① | ||||||
| 6 | 200 | 干/湿 | 2.15/2.02① | 95.0/98.0① | ||||||
| 6 | 500 | 干/湿 | 2.50/2.27 | 87.7/94.0 | ||||||
| 自制 | 正渗透膜 | 平板膜 | 60Co | 0 | 0 | 湿 | 膜面积40.5cm2,盐浓度20mg/L,流速11cm/s,pH7.0,(25±0.5)℃ | 11.65② | Co:93.5 Sr:92.4 | [ |
| 12 | 20 | 湿 | 11.52② | Co:95.0 Sr:97.3 | ||||||
| 12 | 120 | 湿 | 17.82② | Co:91.3 Sr:95.8 | ||||||
| Dow NF90 | 纳滤膜 | 平板膜 | 60Co | 0 | 0 | 湿 | 膜面积27cm2,UO2(NO3)2·6H2O 8.0mg/L,CsCl 50mmol/L,CaCl2 50mmol/L,压力10bar,流速 10m/s,pH7.2±0.1,(22±1.0)℃ | 6.74 | UO22+:97 Ca2+:96 Cs+:95.6 | [ |
| 10 | 10 | 湿 | 6.14 | — | ||||||
| 10 | 100 | 湿 | 4.60 | — | ||||||
| 10 | 300 | 湿 | 4.28 | UO22+:81.0 Ca2+:74.6 Cs+:72.7 | ||||||
| PA膜 | 源项 | 条件 | 性能参数 | 参考文献 | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 膜来源 | 种类 | 样式 | 辐射源 | 剂量率/kGy·h-1 | 剂量/kGy | 辐射 | 测试 | 渗透通量/L·m-2·h-1·bar-1 | 截留率/% | |
| PA-300 | 反渗透膜 | 平板膜 | 60Co | — | 0 | 湿 | NaCl 200mg/kg,压力39.2bar | 324 | 98.3 | [ |
| 0.48 | 25 | 湿 | 499 | 98.4 | ||||||
| 0.48 | 50 | 湿 | 875 | 79.5 | ||||||
| 未知 | 反渗透膜 | 平板膜 | 加速器 | 0 | 湿 | NaCl 1500mg/kg,压力14.71bar,pH6.5,25℃ | 3.14 | 99.5 | [ | |
| 400 | 湿 | 3.14 | 99.5 | |||||||
| 1000 | 湿 | 2.95 | 99.4 | |||||||
| 2000 | 湿 | 2.83 | 88.1 | |||||||
| 4000 | 湿 | 132.00 | 2.1 | |||||||
| Osmonics SE | 反渗透膜 | 平板膜 | 60Co | 0.5 | 0 | 湿 | 膜面积138cm2,NaCl 1.0g/L,压力28bar,流速250L/h,pH6.0,(25±0.5)℃ | 2.9 | 98.6 | [ |
| 0.5 | 100 | 湿 | 2.7① | 96.0① | ||||||
| 0.5 | 1000 | 湿 | 7.0 | 64 | ||||||
| Osmonics SE | 反渗透膜 | 平板膜 | 60Co | 0.5 | 0 | 干 | 膜面积138cm2,NaCl 0.5g/L,压力28bar,流速250L/h,pH6.0,(25±0.5)℃ | 2.9 | 98.5 | [ |
| 0.5 | 100 | 干 | 2.3 | 97.0 | ||||||
| 0.5 | 200 | 干 | 2.5 | 96.3 | ||||||
| 0.5 | 500 | 干 | 4.3 | 95 | ||||||
| 0.5 | 1000 | 干 | 7.0 | 64 | ||||||
| SW30 HR | 反渗透膜 | 巻式膜 | 60Co | 0 | 0 | 膜面积2.6cm2,压力30bar,流速300L/h,pH6.0,(25±3)℃ | 1.1 | 99.1 | [ | |
| 0.5 | 1000 | 2.2 | 75 | |||||||
| Osmonics SE | 反渗透膜 | 巻式膜 | 0 | 0 | 2.9 | 98.5 | ||||
| 0.5 | 1000 | 7.2 | 64 | |||||||
| 5 | 1000 | 92.3 | ||||||||
| 自制 | 反渗透膜 | 平板膜 | 60Co | 0 | 0 | 干/湿 | 膜面积6.48cm2,NaCl 2000mg/kg,压力15.5bar,流速0.19m/s,pH7.0,(25±0.5)℃ | 1.94 | 98.1 | [ |
| 6 | 20 | 干/湿 | 1.93/1.92① | 98.5/99.0① | ||||||
| 6 | 50 | 干/湿 | 1.95/1.89① | 98.0/98.8① | ||||||
| 6 | 100 | 干/湿 | 2.00/1.94① | 97.5/98.5① | ||||||
| 6 | 200 | 干/湿 | 2.15/2.02① | 95.0/98.0① | ||||||
| 6 | 500 | 干/湿 | 2.50/2.27 | 87.7/94.0 | ||||||
| 自制 | 正渗透膜 | 平板膜 | 60Co | 0 | 0 | 湿 | 膜面积40.5cm2,盐浓度20mg/L,流速11cm/s,pH7.0,(25±0.5)℃ | 11.65② | Co:93.5 Sr:92.4 | [ |
| 12 | 20 | 湿 | 11.52② | Co:95.0 Sr:97.3 | ||||||
| 12 | 120 | 湿 | 17.82② | Co:91.3 Sr:95.8 | ||||||
| Dow NF90 | 纳滤膜 | 平板膜 | 60Co | 0 | 0 | 湿 | 膜面积27cm2,UO2(NO3)2·6H2O 8.0mg/L,CsCl 50mmol/L,CaCl2 50mmol/L,压力10bar,流速 10m/s,pH7.2±0.1,(22±1.0)℃ | 6.74 | UO22+:97 Ca2+:96 Cs+:95.6 | [ |
| 10 | 10 | 湿 | 6.14 | — | ||||||
| 10 | 100 | 湿 | 4.60 | — | ||||||
| 10 | 300 | 湿 | 4.28 | UO22+:81.0 Ca2+:74.6 Cs+:72.7 | ||||||
| 分离膜 | 剂量/kGy | C质量分数/% | O质量分数/% | N质量分数/% | S质量分数/% | O/N | C/N | C/O | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| 原始RO膜 | 0 | 70.0 | 22.8 | 6.8 | 0.4 | 3.3 | 7.1 | 3.1 | [ |
| 有氧辐射RO膜 | 100 | 73.4 | 18.8 | 7.1 | 0.6 | 2.6 | 10.3 | 3.9 | |
| 有氧辐射RO膜 | 1000 | 74.3 | 22.2 | 2.0 | 1.1 | 10.9 | 36.4 | 3.4 | |
| 无氧辐射RO膜 | 100 | 73.4 | 18.8 | 7.1 | 0.6 | 2.6 | 10.3 | 3.9 | |
| 无氧辐射RO膜 | 1000 | 75.4 | 22.2 | 1.7 | 0.4 | 13.1 | 44.3 | 3.4 | |
| 原始RO膜 | 0 | 73.8 | 14.5 | 11.6 | 1.25 | 6.43 | 5.09 | [ | |
| 无氧辐射RO膜 | 20 | 74.6 | 13.8 | 11.6 | 1.19 | 6.44 | 5.41 | ||
| 无氧辐射RO膜 | 50 | 75.4 | 13.1 | 11.5 | 1.14 | 6.55 | 5.74 | ||
| 无氧辐射RO膜 | 100 | 75.8 | 12.7 | 11.5 | 1.11 | 6.62 | 5.96 | ||
| 无氧辐射RO膜 | 200 | 76.0 | 13.1 | 10.8 | 1.21 | 7.02 | 5.78 | ||
| 无氧辐射RO膜 | 500 | 76.6 | 13.4 | 10.0 | 1.34 | 7.65 | 5.71 | ||
| 无氧辐射FO膜 | 0 | 70.8 | 28.66 | — | — | — | — | 2.5 | [ |
| 无氧辐射FO膜 | 20 | 73.1 | 26.48 | — | — | — | — | 2.8 | |
| 无氧辐射FO膜 | 200 | 71.3 | 28.21 | — | — | — | — | 2.5 | |
| 原始NF90膜 | 0 | 71.13 | 17.90 | 10.97 | 1.63 | 6.48 | 3.97 | [ | |
| 无氧辐射NF90膜 | 300 | 71.20 | 17.62 | 11.17 | 1.58 | 6.37 | 4.04 |
| 分离膜 | 剂量/kGy | C质量分数/% | O质量分数/% | N质量分数/% | S质量分数/% | O/N | C/N | C/O | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| 原始RO膜 | 0 | 70.0 | 22.8 | 6.8 | 0.4 | 3.3 | 7.1 | 3.1 | [ |
| 有氧辐射RO膜 | 100 | 73.4 | 18.8 | 7.1 | 0.6 | 2.6 | 10.3 | 3.9 | |
| 有氧辐射RO膜 | 1000 | 74.3 | 22.2 | 2.0 | 1.1 | 10.9 | 36.4 | 3.4 | |
| 无氧辐射RO膜 | 100 | 73.4 | 18.8 | 7.1 | 0.6 | 2.6 | 10.3 | 3.9 | |
| 无氧辐射RO膜 | 1000 | 75.4 | 22.2 | 1.7 | 0.4 | 13.1 | 44.3 | 3.4 | |
| 原始RO膜 | 0 | 73.8 | 14.5 | 11.6 | 1.25 | 6.43 | 5.09 | [ | |
| 无氧辐射RO膜 | 20 | 74.6 | 13.8 | 11.6 | 1.19 | 6.44 | 5.41 | ||
| 无氧辐射RO膜 | 50 | 75.4 | 13.1 | 11.5 | 1.14 | 6.55 | 5.74 | ||
| 无氧辐射RO膜 | 100 | 75.8 | 12.7 | 11.5 | 1.11 | 6.62 | 5.96 | ||
| 无氧辐射RO膜 | 200 | 76.0 | 13.1 | 10.8 | 1.21 | 7.02 | 5.78 | ||
| 无氧辐射RO膜 | 500 | 76.6 | 13.4 | 10.0 | 1.34 | 7.65 | 5.71 | ||
| 无氧辐射FO膜 | 0 | 70.8 | 28.66 | — | — | — | — | 2.5 | [ |
| 无氧辐射FO膜 | 20 | 73.1 | 26.48 | — | — | — | — | 2.8 | |
| 无氧辐射FO膜 | 200 | 71.3 | 28.21 | — | — | — | — | 2.5 | |
| 原始NF90膜 | 0 | 71.13 | 17.90 | 10.97 | 1.63 | 6.48 | 3.97 | [ | |
| 无氧辐射NF90膜 | 300 | 71.20 | 17.62 | 11.17 | 1.58 | 6.37 | 4.04 |
| 1 | TAN Z, CHEN S G, PENG X S, et al. Polyamide membranes with nanoscale turing structures for water purification[J]. Science, 2018,360(6388): 518-521. |
| 2 | ZHANG Xiaoyuan, GU Ping, LIU Yu. Decontamination of radioactive wastewater: State of the art and challenges forward[J]. Chemosphere, 2019, 215: 543-553. |
| 3 | PHILLIPS D C. Effects of radiation on polymers[J]. Materials Science and Technology, 1988, 4(1): 85-91. |
| 4 | RAMACHANDHRAN V, MISRA B M. Studies on effect of irradiation on semipermeable membranes[J]. Journal of Applied Polymer Science, 1982, 27(9): 3427-3435. |
| 5 | RAMACHANDHRAN V, MISRA B M. Concentration of radioactive liquid streams by membrane processes[J]. Journal of Applied Polymer Science, 1983, 28(5):1641-1650. |
| 6 | CHMIELEWSKI A G, HARASIMOWICZ M. Influence of Gamma and electron irradiation on transport properties of ultrafiltration membranes[J]. Nukleonika, 1992, 37(4): 61-70. |
| 7 | YU Suping, ZHANG Xue, LI Fuzhi, et al. Influence of low dose Gamma-ray irradiation on the performance and degradation of PVDF ultrafiltration membrane[J]. Radiation Physics and Chemistry, 2017, 136:38-43. |
| 8 | 赵海洋, 倪士英, 张林. 纳米材料在放射性废水处理中的应用进展[J]. 化工进展, 2020, 39(3): 1057-1069. |
| ZHAO Haiyang, NI Shiying, ZHANG Lin. Application of nanomaterials in the radioactive wastewater treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1057-1069. | |
| 9 | 环境保护部核与辐射安全中心组织. 核安全综合知识[M]. 修订版. 北京: 中国原子能出版社, 2018. |
| Organized by the Nuclear and Radiation Safety Center of the Ministry of Environmental Protection. Comprehensive knowledge of nuclear safety[M]. Revised ed. Beijing: China Atomic Energy Press, 2018. | |
| 10 | LIU Chao, ZHANG Jiaming, WANG Wenjing, et al. Effects of Gamma-ray irradiation on separation and mechanical properties of polyamide reverse osmosis membrane[J]. Journal of Membrane Science, 2020, 611: 118354. |
| 11 | COMBERNOUX Nicolas, SCHRIVE Luc, LABED Véronique, et al. Treatment of radioactive liquid effluents by reverse osmosis membranes: From lab-scale to pilot-scale[J]. Water Research, 2017, 123: 311-320. |
| 12 | CHMIELEWSKI A G, HARASIMOWICZ M. Influence of Gamma and electron irradiation on transport properties of nanofiltration and hyperfiltration membranes[J]. Nukleonika, 1997, 42(4):857-62. |
| 13 | EL-ARNAOUTY M B, ABDEL GHAFFAR A M, EID M, et al. Nano-modification of polyamide thin film composite reverse osmosis membranes by radiation grafting[J]. Journal of Radiation Research and Applied Sciences, 2018, 11(3): 204-216. |
| 14 | GUO Yongqiang, LIU Chao, LIU Hongpeng, et al. Influences of Gamma-ray irradiation on PVDF membrane behavior: an experimental study based on simulation and numerical analysis[J]. Polymer Degradation and Stability, 2021, 193: 109722. |
| 15 | NAKASE Yoshiaki, YANAGI Tadashi, UEMURA Tadahiro. Irradiation effects on properties of reverse osmosis membrane based on crosslinked aromatic polyamide[J]. Journal of Nuclear Science and Technology, 1994, 31(11): 1214-1221. |
| 16 | CHUNG Youngkun, PARK Daeseon, KIM Hyojeon, et al. The impact of Gamma-irradiation from radioactive liquid wastewater on polymeric structures of nanofiltration (NF) membranes[J]. Journal of Hazardous Materials, 2021, 403: 123578. |
| 17 | CLOUGH R L, GILLEN K T, MALONE G M, et al. Color formation in irradiated polymers[J]. Radiation Physics and Chemistry, 1996, 48(5): 583-594. |
| 18 | ARNAL J M, SANCHO M, VERDÚ G, et al. Treatment of 137Cs liquid wastes by reverse osmosis Part I. Preliminary tests[J]. Desalination, 2003, 154(1): 27-33. |
| 19 | COMBERNOUX N, LABED V, SCHRIVE L, et al. Effect of Gamma irradiation at intermediate doses on the performance of reverse osmosis membranes[J]. Radiation Physics and Chemistry, 2016, 124:241-245. |
| 20 | COMBERNOUX Nicolas, SCHRIVE Luc, LABED Véronique, et al. Study of polyamide composite reverse osmosis membrane degradation in water under Gamma rays[J]. Journal of Membrane Science, 2015, 480: 64-73. |
| 21 | TANG Chuyang Y, KWON Young-Nam, LECKIE James O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry[J]. Desalination, 2009, 242(1/2/3): 149-167. |
| 22 | LIN Saisai, ZHAO Haiyang, ZHU Liping, et al. Seawater desalination technology and engineering in China: A review[J]. Desalination, 2021, 498: 114728. |
| 23 | LIU Xiaojing, WU Jinling, HOU Lian, et al. Performance and deterioration of forward osmosis membrane exposed to various dose of Gamma-ray irradiation[J]. Annals of Nuclear Energy, 2020, 135: 106950. |
| 24 | CADOTTE John E. Evolution of composite reverse osmosis membranes[M]//Materials Science of Synthetic Membranes. Washington, D.C.: American Chemical Society, 1985: 273-294. |
| 25 | YAN Hao, MIAO Xiaopei, XU Jian, et al. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes[J]. Journal of Membrane Science, 2015, 475: 504-510. |
| 26 | Nyoman RUPIASIH N, VIDYASAGAR P B. Comparative study of effect of low and medium dose rate of γ irradiation on microporous polysulfone membrane using spectroscopic and imaging techniques[J]. Polymer Degradation and Stability, 2008, 93(7): 1300-1307. |
| 27 | COMBERNOUX Nicolas, SCHRIVE Luc, LABED Véronique, et al. Irradiation effects on RO membranes: Comparison of aerobic and anaerobic conditions[J]. Polymer Degradation and Stability, 2016, 134: 126-135. |
| 28 | ORLANDO Coronell, MARIÑAS Benito J, CAHILL David G. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes[J]. Environmental Science & Technology, 2011, 45(10): 4513-4520. |
| 29 | ARNAL J M, SANCHO M, VERDÚ G, et al. Treatment of 137Cs liquid wastes by reverse osmosis Part II. Real application[J]. Desalination, 2003, 154(1): 35-42. |
| [1] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
| [2] | ZHAO Zhenzhen, ZHENG Xi, WANG Xueqi, WANG Tao, FENG Yingnan, REN Yongsheng, ZHAO Zhiping. Research progress on microporous supporting substrate of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1917-1933. |
| [3] | HE Meiying, YUE Xuejie, ZHANG Tao, QIU Fengxian. Infrared radiation control principle and its material research progress in thermal management application [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3719-3730. |
| [4] | REN Shoulong, LU Tingzhong, TANG Bo, GAO Ying, DAI Yuanzhe, JI li, ZHAO Shengwu. Research progress on radiative cooling materials [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1982-1993. |
| [5] | LYU Xiaoqi, LI Hong, ZHAO Zhenyu, LI Xingang, GAO Xin, FAN Xiaolei. Microwave-assisted carbon-based catalysts for fructose dehydration to 5-hydroxymethylfurfural [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 637-647. |
| [6] | MU Shiyun, LIU Kai, LYU Xiaoqi, JIAO Yilai, LI Xingang, LI Hong, FAN Xiaolei, GAO Xin. Conversion of fructose to 5-hydroxymethylfurfural catalyzed by microwave-assisted zirconia@carbon nanotubes [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5858-5869. |
| [7] | ZHANG Yuekan, GE Jiangbo, LIU Peikun, YANG Xinghua. Flow field characteristics and separation performance of multi-inlet hydrocyclone [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 86-94. |
| [8] | WANG Yuhan, SHEN Chong, SU Yuanhai. Fundamentals and research progress of photochemical microreaction technology [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4749-4761. |
| [9] | CHEN Yuhao, LIU Jiahui, LIU Juan, ZHANG Hongbin, SUN Haixiang. Research progress of novel composite nanofiltration membrane [J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2665-2675. |
| [10] | QI Qi, WANG Changjian, YI Jianhua, HUANG Yizhi, LI Jinjian, ZHANG Biao, XU Chuanlong. Approach to optimize the sampling of multi-light field camera system based on feature rays selection [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6581-6589. |
| [11] | Rong ZHANG, Youchao XIE, Changmu YU, Qianrong PENG, Min YANG. Microwave irradiation synthesis of 1,3-bis(3-triethoxysilylpropyl)-imidazolium chloroquinone [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1915-1921. |
| [12] | Qingsheng LIU, Huajin CHENG, Chengliang TAN, Jianmin QIU, Tao TU. Infrared radiation properties and mechanism of LaFeO3 samples thatB-doped Mn/Co/Cr [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1897-1906. |
| [13] | Haiyang ZHAO,Shiying NI,Lin ZHANG. Application of nanomaterials in the radioactive wastewater treatment [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1057-1069. |
| [14] | Zelong WANG,Jianjun WANG,Hongyu LIU. Separation performance analysis of a two-stage combined demister [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 890-897. |
| [15] | ZHOU Fei, XIONG Zhibo, JIN Jing, WU Chao, LU Wei, DING Xuchun. Influence of calcination temperature on the micro-structure and the NH3-SCR activity of magnetic iron-titanium mixed oxide catalyst [J]. Chemical Industry and Engineering Progress, 2018, 37(09): 3410-3415. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |