Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (3): 1057-1069.DOI: 10.16085/j.issn.1000-6613.2019-0924
• Materials science and technology • Previous Articles Next Articles
Haiyang ZHAO1(),Shiying NI2,Lin ZHANG3()
Received:
2019-06-10
Online:
2020-04-03
Published:
2020-03-05
Contact:
Lin ZHANG
通讯作者:
张林
作者简介:
赵海洋(1988—),男,博士,工程师,研究方向为水处理。E-mail:基金资助:
CLC Number:
Haiyang ZHAO,Shiying NI,Lin ZHANG. Application of nanomaterials in the radioactive wastewater treatment[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1057-1069.
赵海洋,倪士英,张林. 纳米材料在放射性废水处理中的应用进展[J]. 化工进展, 2020, 39(3): 1057-1069.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0924
1 | 张晓媛,顾平,张光辉.纳米材料在放射性废水处理中的吸附应用[J].环境化学,2016,35(10):2162-2171. |
ZHANG Xiaoyuan,GU Ping,ZHANG Guanghui.Application of adsorptive nanomaterials in radioactive water treatment[J].Environmental Chemistry,2016,35(10):2162-2171. | |
2 | LU S H,SUN Y B,CHEN C L.Adsorption of radionuclides on carbon-based nanomaterials[J].Interface Science and Technology,2019,29:141-215. |
3 | SHIM J W,PARK S J,RYU S K.Effect of modification with HNO and NaOH on metal adsorption by pitch-based activated carbon fibers[J].Carbon,2001,39(11):1635-1642. |
4 | 杜毅,王建,王宏青,等.人工纳米材料吸附放射性核素的机理研究[J].农业环境科学学报,2016,35(10):1837-1847. |
DU Yi,WANG Jiang,WANG Hongqing,et al.Research on sorption mechanism of radionuclides by manufactured nanomaterials[J].Journal of Agro-Environment Science,2016,35(10):1837-1847. | |
5 | TAN X L,REN X M,CHEN C L,et al.Analytical approaches to the speciation of lanthanides at solid-water interfaces[J].TRAC-Trend Anal. Chem.,2014,61:107-132. |
6 | KENTONA R,WOOYONG U,MARKUS F.Transport of strontium and cesium in simulated hanford tank waste leachate through quartz sand under saturated and unsaturated flow[J].Environ. Sci. Technol.,2010,44(21):8089-8094. |
7 | OLSSON M,JAKOBSSON A M,ALBINSSON Y.Sorption of Pu(VI) onto TiO2[J].J. Colloid Interf. Sci.,2003,266(2):269-275. |
8 | XU J Z,FAN Q H,NIU Z W,et al.Studies of Eu(III) sorption on TiO2: effects of pH, humic acid and poly(acrylic acid) [J].Chem. Eng. J.,2012,179(1):186-192. |
9 | TAN X,WANG X,FANG M,et al.Sorption and desorption of Th(IV) on nanoparticles of anatase studied by batch and spectroscopy methods[J].Colloid Surface A,2007,296(1):109-116. |
10 | TAN X,WANG X,CHEN C,et al.Effect of soil humic and fulvic acids, pH and ionic strength on Th(Ⅳ) sorption to TiO2 nanoparticles[J].Appl. Radiat. Isotopes,2007,65(4):375-381. |
11 | LIANG Z,XU M,WEI G,et al.Fe3O4@titanate nanocomposites: novel reclaimable adsorbents for removing radioactive ions from wastewater[J].J. Mater. Sci. Mater. Electron.,2015,26(5):2742-2747. |
12 | MAJIDNIA Z,IDRIS A.Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads[J].Appl. Radiat. Isotopes,2015,105:105-113. |
13 | FAN F L,QIN Z,BAI J,et al.Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles[J].J. Environ. Radioact.,2012,106(2):40-46. |
14 | LIU X,HU Q,FANG Z,et al.Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal[J].Langmuir,2009,25(1):3-8. |
15 | DING C,CHENG W,SUN Y,et al.Novel fungus-Fe3O4 bio-nanocomposites as high performance adsorbents for the removal of radionuclides[J].J. Hazard. Mater.,2015,295:127-137. |
16 | MU W,LI X,LIU G,et al.Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers[J].Dalton Trans.,2015,45(2):753-759. |
17 | LU Y,LIU H,GAO R,et al.Coherent interface assembled Ag2O anchored nanofibrillated cellulose porous aerogels for radioactive iodine capture[J].ACS Appl. Mater. Interfaces,2016,8(42):29179-29185. |
18 | MU W,YU Q,LI X,et al.Adsorption of radioactive iodine on surfactant-modified sodium niobate[J].RSC Adv.,2016,6(85):81719-81725. |
19 | BO A,SARINA S,ZHENG Z,et al.Removal of radioactive iodine from water using Ag2O grafted titanate nanolamina as efficient adsorbent[J]. J. Hazard. Mater., 2013,246/247(4):199-205. |
20 | KAYNAR Ü H,AYVACIKLI M,Ü HIÇSÖNMEZ,et al.Removal of thorium (Ⅳ) ions from aqueous solution by a novel nanoporous ZnO: isotherms, kinetic and thermodynamic studies[J].Journal of Environmental Radioactivity,2015,150:145-151. |
21 | KAYNAR Ü H,AYVACIKLI M,Ç KAYNAR S,et al.Removal of uranium(Ⅵ) from aqueous solutions using nanoporous ZnO prepared with microwave-assisted combustion synthesis[J].J. Radioanal. Nucl. Chem.,2014,299(3):1469-1477. |
22 | 万小岗,杨胜亚.纳米级零价铁处理含铀废水初步实验研究[J].工业水处理,2012,32(3):42-44. |
WAN Xiaogang,YANG Shengya.Study on the treatment of U(Ⅵ)-bearing wastewater by nano zero-valent iron[J].Industrial Water Treatment,2012,32(3):42-44. | |
23 | XU J,LI Y,CHEN J,et al.Removal of uranium from aqueous solution using montmorillonite-supported nanoscale zero-valent iron[J].J. Radioanal. Nucl. Chem.,2014,299(1):329-336. |
24 | DARAB J G,AMONETTE A B,BURKE D S D,et al.Removal of pertechnetate from simulated nuclear waste streams using supported zerovalent iron[J].Cheminform,2010,19:5703-5713. |
25 | 张煜昌,王娜,那平.Ag/TiO2复合材料的制备及其对碘离子的吸附研究[J].离子交换与吸附,2013,29(4),296-305. |
ZHANG Yuchang,WANG Na,NA Ping.Study on preparation of Ag/TiO2 composite materials and its adsorption properties for iodine ions[J].Ion Exchange and Adsorption,2013,29(4):296-305. | |
26 | LIU S,NA W,ZHANG Y,et al.Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation[J].J. Hazard. Mater.,2015,284:171-81. |
27 | 王长柏,李小燕,刘义保,等.纳米零价铁去除溶液中Pb2+的研究[J].环境科技,2014,3:1-4. |
WANG Changbo LI Xiaoyang,LIU Yibao,et al.Study on thenZVI on the Pb2+ removal[J].Environ. Sci. Technol.,2014,3:1-4. | |
28 | 王长柏,李小燕,刘义保,等.包覆型纳米零价铁去除溶液中Pb(Ⅱ)-210的研究[J].辐射研究与辐射工艺学报,2014,32(3):54-58. |
WANG Changbo,LI Xiaoyan,LIU Yibao,et al.Study on removal of Pb(II)-210 from aqueous solution by coated nanoscale zero-valent iron[J]. J. Radiat. Res. Radiat. Process,2014,32(3):54-58. | |
29 | GAO Z,BANDOSZ T J,ZHAO Z,et al.Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes[J].J. Hazard. Mater.,2009,167(1):357-365. |
30 | SUN Y,YANG S,SHENG G,et al.The removal of U(Ⅵ) from aqueous solution by oxidized multiwalled carbon nanotubes[J].J. Environ. Radioactiv.,2012,105(2):40-47. |
31 | LI Y H,WANG S,LUAN Z,et al.Adsorption of cadmium(Ⅱ) from aqueous solution by surface oxidized carbon nanotube[J].Carbon,2003,41(5):1057-1062. |
32 | YANG J,DONG Y,LI J,et al.Removal of Co(Ⅱ) from aqueous solutions by sulfonated magnetic multi-walled carbon nanotubes[J].Korean J. Chem. Eng.,2015,32(11):2247-2256. |
33 | SHAO D,JIANG Z,WANG X,et al.Plasma induced grafting carboxymethyl cellulose on multiwalled carbon nanotubes for the removal of UO22+ from aqueous solution[J]. J. Phys. Chem. B,2009,113(4):860. |
34 | SHENG G,LI Y,DONG H,et al.Environmental condition effects on radionuclide 64Cu(II) sequestration to a novel composite: polyaniline grafted multiwalled carbon nanotubes[J].J. Radioanal. Nucl. Chem.,2012,293(3):797-806. |
35 | SHAO D,HU J,WANG X.Plasma induced grafting multiwalled carbon nanotube with chitosan and its application for removal of UO22+, Cu2+, and Pb2+ from aqueous solutions[J].Plasma Process Polym.,2010,7(12):977-85. |
36 | YANG D,SARINA S,ZHU H,et al.Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes[J].Angew. Chem.Int. Edit.,2011,50(45):10594-10598. |
37 | XU M,WEIL G,LI S,et al.Titanate nanotubes as a promising absorbent for high effective radioactive uranium ions uptake[J].J. Nanosci. Nanotechnol.,2012,12(8):6374-6379. |
38 | LIU J,LUO M,PING A.Synthesis, characterization, and application of titanate nanotubes for Th(Ⅳ) adsorption[J].J. Radioanal. Nucl. Chem.,2013,298(2):1427-1434. |
39 | XU M,WEI G,LIU N,et al.Novel fungus-titanate bio-nanocomposites as high performance adsorbents for the efficient removal of radioactive ions from wastewater[J].Nanoscale,2013,6(2):722-725. |
40 | SUN Y B,WU Z Y,WANG X X,et al.Macroscopic and microscopic investigation of U(Ⅵ) and Eu(Ⅲ) adsorption on carbonaceous nanofibers[J].Environ. Sci. Technol.,2016,50(8):4459-4467. |
41 | SUN Y B,LU S H,WANG X X,et al.Plasma-facilitated synthesis of amidoxime/carbon nanofiber hybrids for effective enrichment of238U(Ⅵ) and241Am(Ⅲ) [J].Environ. Sci. Technol.,2017,51(21):12274-12282. |
42 | HU B W,HU Q Y,XU D,et al.The adsorption of U(Ⅵ) on carbonaceous nanofibers: a combined batch, EXAFS and modeling techniques[J].Sep. Purif. Technol.,2017,175:140-146. |
43 | YANG D J,ZHENG Z F,ZHU H Y,et al.Titanate nanofibers as intelligent absorbents for the removal of radioactive ions from water[J].Adv. Mater.,2008,20:2777-2781. |
44 | SARINA S,BO A,LIU D,et al.Separate or simultaneous removal of radioactive cations and anions from water by layered sodium vanadate-based sorbents[J].Chem. Mater.,2014,26(16):4788-4795. |
45 | MU W,YU Q,LI X,et al.Niobate nanofibers for simultaneous adsorptive removal of radioactive strontium and iodine from aqueous solution[J].J. Alloy. Compd.,2017,693:550-557. |
46 | XU D,TAN X,CHEN C,et al.Removal of Pb(Ⅱ) from aqueous solution by oxidized multiwalled carbon nanotubes[J].J. Hazard. Mater.,2008,154(1):407-416. |
47 | ANNA Y R,SLESAREV A S,KALMYKOV S N,et al.Graphene oxide for effective radionuclide removal[J].Phys. Chem. Chem. Phys.,2013,15(7):2321-2327. |
48 | SUN Y,YANG S,CHEN Y,et al.Adsorption and desorption of U(Ⅵ) on functionalized graphene oxides: a combined experimental and theoretical study[J].Environ. Sci. Technol.,2015,49(7):4255-4262. |
49 | FANG F,KONG L,HUANG J,et al.Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite[J].J. Hazard. Mater.,2014,270(3):1-10. |
50 | WU S,ZHANG K,WANG X,et al.Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide[J].Chem. Eng. J.,2015,262(1/2):1292-1302. |
51 | SONG W,WANG X,WANG Q,et al.Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J].Phys. Chem. Chem. Phys.,2015,17(1):398. |
52 | YANG H,LEI S,ZHAI J,et al.In situ controllable synthesis of magnetic prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water[J].J. Mater. Chem. A,2013,2(2):326-332. |
53 | WEN T,WU X,LIU M,et al.Efficient capture of strontium from aqueous solutions using graphene oxide-hydroxyapatite nanocomposites[J].Dalton T.,2014,43(20):7464-7472. |
54 | HE C,SHAO D,LI J,et al.The uptake of radionuclides from aqueous solution by poly(amidoxime) modified reduced graphene oxide[J].Chem. Eng. J.,2014,254(7):623-634. |
55 | GU P,ZHANG S,LI X,et al.Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution[J].Environ. Pollut.,2018,240:493-505. |
56 | 韩玉,丁珂,孙翠华,等.钛酸钠纳米片对水溶液中放射性离子的吸附研究[J].青岛大学学报(自然科学版),2013,26(3):43-48. |
HAN Yu,DING Ke,SUN Cuihua,et al.Layered titanate nanolaminas as efficient adsorbent for the removal of radioactive ions from water[J].J. Qingdao Univer.(Nat. Sci. Edit.),2013,26(3):43-48. | |
57 | YANG D J,LIU H W,LIU L,et al.Silver oxide nanocrystals anchored on titanate nanotubes and nanofibers: promising candidates for entrapment of radioactive iodine anions[J].Nanoscale,2013,5(22):11011-11018. |
58 | CHEN Y Y,YU S H,YAO Q Z,et al.One-step synthesis of Ag2O@ Mg(OH)2 nanocomposite as an efficient scavenger for iodine and uranium[J].J. Colloid Interf. Sci.,2017,510:280-291. |
59 | ZARE F,GHAEDI M,DANESHFAR A,et al.Efficient removal of radioactive uranium from solvent phase using AgOH-MWCNTs nanoparticles: kinetic and thermodynamic study[J].Chem. Eng. J.,2015,273:296-306. |
60 | ASADOLLAHI N,YAVARI R,GHANADZADEH H.Preparation, characterization and analytical application of stannic molybdophosphate immobilized on multiwalled carbon nanotubes as a new adsorbent for the removal of strontium from wastewater[J].J. Radioanal. Nucl. Chem.,2015,303(3):2445-2455. |
61 | LEE H K,CHOI J W,OH W,et al.Sorption of cesium ions from aqueous solutions by multi-walled carbon nanotubes functionalized with copper ferrocyanide[J].J. Radioanal. Nucl. Chem.,2016,309(2):477-484. |
62 | QI W,TIAN L,LIU B,et al.Adsorption of Eu(Ⅲ) on defective magnetic FeNi/RGO composites: effect of pH, ion strength, ions and humic acid[J].J. Radioanal. Nucl. Chem.,2015,303(3):2211-2220. |
63 | MU W,YU Q,RUI H,et al.Porous three-dimensional reduced graphene oxide merged with WO3 for efficient removal of radioactive strontium[J].Appl. Surf. Sci.,2017,423:1203-1211. |
64 | YU S H,LI H,YAO Q Z,et al.Microwave-assisted preparation of sepiolite-supported magnetite nanoparticles and its removal ability to low concentration Cr(Ⅵ) [J].RSC Adv.,2015,5(103):84471-84482. |
65 | RANA D,MATSUURA T,KASSIM M A,et al.Radioactive decontamination of water by membrane processes—A review[J].Desalination,2013,321(15):77-92. |
66 | RAO S V S,PAUL B,LAL K B,et al.Effective removal of cesium and strontium from radioactive wastes using chemical treatment followed by ultra filtration[J].J. Radioanal. Nucl. Chem.,2000,246(2):413-418. |
67 | KHEDR M G.Nanofiltration and low energy reverse osmosis in rejection of radioactive isotopes and heavy metal cations from drinking water sources[J].Desalin. Water Treat.,2009,2(1):342-350. |
68 | ZHANG C P,GU P,ZHAO J,et al.Research on the treatment of liquid waste containing cesium by an adsorption-microfiltration process with potassium zinc hexacyanoferrate[J].J. Hazard. Mater.,2009,167(1):1057-1062. |
69 | AMBASHTA R D,SILLANPÄÄ M E.Membrane purification in radioactive waste management: a short review[J].J. Environ. Radioactiv.,2012,105(25):76-84. |
70 | KALRA A,GARDE S,HUMMER G.Osmotic water transport through carbon nanotube membranes[J].Proc. Natl. Acad. Sci. U.S.,2003,100(18):10175-10180. |
71 | HINDS B J,CHOPRA N,RANTELL T,et al.Aligned multiwalled carbon nanotube membranes[J].Science,2004,303(5654):62-65. |
72 | HOLT J K,PARK H G,WANG Y,et al.Fast mass transport through sub-2-nanometer carbon nanotubes[J].Science,2006,312(5776):1034-1037. |
73 | COHEN-TANUGI D,GROSSMAN J C.Water desalination across nanoporous graphene[J].Nano Lett.,2012,12(7):3602-3608. |
74 | JIANG D,COOPER V R,DAI S.Porous graphene as the ultimate membrane for gas separation[J].Nano Lett.,2009,9(12):4019-4124. |
75 | LI H,SONG Z,ZHANG X,et al.Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation[J].Science,2013,342(6154):95-98. |
76 | HUANG T,ZHANG L,CHEN H,et al.Sol-gel fabrication of a non-laminated graphene oxide membrane for oil/water separation[J].J. Mater. Chem. A,2015,3(38):19517-19524. |
77 | NAIR R R,WU H A,JAYARAM P N,et al.Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J].Science,2012,335(6067):442-444. |
78 | RAUWEL P,RAUWEL E.Towards the extraction of radioactive cesium-137 from watervia graphene/cnt and nanostructured prussian blue hybrid nanocomposites: a review[J].Nanomaterials,2019,9(5):682-702. |
79 | WILLIAMS C D,CARBONE P.Selective removal of technetium from water using graphene oxide membranes[J].Environ. Sci. Technol.,2016,50(7):3875-3881. |
80 | WEN T,ZHAO Z,SHEN C,et al.Multifunctional flexible free-standing titanate nanobelt membranes as efficient sorbents for the removal of radioactive90Sr2+ and137Cs+ ions and oils[J].Sci. Rep.UK,2016,6:1-10. |
81 | ZHANG Y,ZHANG S,CHUNG T S.Nanometric graphene oxide framework membranes with enhanced heavy metal removalvia nanofiltration[J].Environ. Sci. Technol.,2015,49(16):10235-10242. |
82 | ZHANG Y,ZHANG S,GAO J,et al.Layer-by-layer construction of graphene oxide (GO) framework composite membranes for highly efficient heavy metal removal[J].J. Membrane Sci.,2016,515:230-237. |
83 | DING S,ZHANG L,LI Y,et al.Fabrication of a noval polyvinylidene fluoride membranevia binding SiO2 nanoparticles and a copper ferrocyanidelayer onto a membrane surface for selective removal of cesium[J].J. Hazard. Mater.,2019,368:292-299. |
84 | ZHANG L,LU Y,LIU Y,et al.High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater[J].J. Hazard. Mater.,2016,320:187-193. |
85 | QIU S,WU L,PAN X,et al.Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes[J]. J. Membrane Sci.,2009,342(1/2):165-172. |
86 | ZHAO H,WU L,ZHOU Z,et al.Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide[J].Phys. Chem. Chem. Phys.,2013,15(23):9084-9092. |
87 | ZHANG L,SHI G Z,QIU S,et al.Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes[J].Desalin. Water Treat.,2011,34(1/3):19-24. |
88 | 芦瑛,赵海洋,张林,等.含氧化石墨烯混合基质反渗透复合膜的制备及性能研究[J].中国工程科学,2014,16(7):84-88. |
LU Ying,ZHAO Haiyang,ZHANG Lin,et al.Preparation and characterization of mixed matrix RO membrane of polyamide and GO[J].Eng. Sci.,2014,16(7):84-88. | |
89 | MUSHTAQ S,YUN S J,YANG J E,et al.Efficient and selective removal of radioactive iodine anions using engineered nanocomposite membranes[J].Environ Sci. Nano,2017,4(11):2157-2163. |
90 | SHIM H E,YANG J E,JEONG S W,et al.Silver nanomaterial-immobilized desalination systems for efficient removal of radioactive iodine species in water[J].Nanomaterials,2018,8(9):659-669. |
91 | MUKHERJEE R,BHUNIA P,DE S.Impact of graphene oxide on removal of heavy metals using mixed matrix membrane[J].Chem. Eng. J.,2016,292:284-297. |
[1] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[2] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[3] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[5] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[6] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[7] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[8] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[9] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[10] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[11] | FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong. Research progress in CO2 capture technology using novel biphasic organic amine absorbent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080. |
[12] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
[13] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
[14] | XUE Bo, YANG Tingting, WANG Xuefeng. Research progress of polyaniline/carbon nanotube gas sensing materials [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1448-1456. |
[15] | HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |